login
A197489
Decimal expansion of least x>0 having cos(6x)=(cos 8x)^2.
1
2, 4, 1, 1, 9, 7, 5, 4, 9, 4, 0, 5, 5, 6, 3, 2, 8, 8, 6, 1, 5, 4, 5, 5, 6, 9, 7, 5, 1, 2, 2, 8, 2, 7, 2, 1, 4, 2, 1, 0, 3, 9, 3, 5, 7, 2, 4, 7, 6, 4, 8, 6, 4, 1, 5, 4, 9, 5, 6, 7, 6, 1, 9, 8, 2, 5, 7, 0, 4, 5, 5, 3, 2, 7, 2, 8, 0, 4, 8, 5, 6, 5, 8, 4, 0, 8, 6, 2, 4, 4, 9, 3, 8, 8, 4, 6, 7, 5, 2
OFFSET
0,1
COMMENTS
The Mathematica program includes a graph. See A197476 for a guide for the least x>0 satisfying cos(b*x)=(cos(c*x))^2 for selected b and c.
EXAMPLE
x=0.2411975494055632886154556975122827214210...
MATHEMATICA
b = 6; c = 8; f[x_] := Cos[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .92, .93}, WorkingPrecision -> 100]
RealDigits[t] (* A197488 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, 1}]
CROSSREFS
Cf. A197476.
Sequence in context: A332010 A201287 A236367 * A297966 A103161 A338000
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 15 2011
STATUS
approved