|
|
A197486
|
|
Decimal expansion of least x>0 having cos(4x)=(cos(8x))^2.
|
|
2
|
|
|
2, 8, 4, 4, 3, 5, 9, 8, 3, 2, 2, 6, 3, 6, 3, 8, 8, 9, 4, 4, 7, 3, 6, 2, 4, 6, 5, 0, 1, 3, 7, 5, 2, 0, 8, 7, 3, 9, 6, 2, 0, 1, 0, 7, 2, 5, 8, 7, 3, 9, 3, 8, 1, 8, 0, 0, 3, 7, 9, 5, 6, 3, 1, 6, 8, 4, 0, 2, 4, 5, 8, 6, 8, 3, 6, 8, 1, 8, 0, 4, 4, 4, 9, 7, 0, 0, 8, 2, 0, 1, 2, 9, 4, 1, 1, 1, 8, 1, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
The Mathematica program includes a graph. See A197476 for a guide for the least x>0 satisfying cos(b*x)=(cos(c*x))^2 for selected b and c.
|
|
LINKS
|
|
|
EXAMPLE
|
x=0.284435983226363889447362465013752087396201072...
|
|
MATHEMATICA
|
b = 4; c = 8; f[x_] := Cos[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .28, .29}, WorkingPrecision -> 100]
Plot[{f[b*x], f[c*x]^2}, {x, 0, 0.4}]
RealDigits[ 1/2*ArcTan[ Sqrt[ Root[#^3 - 5#^2 + 19# - 7&, 1]]], 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|