The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A337499 a(n) is the number of ballot sequences of length n tied or won by at most 2 votes. 2
 1, 2, 4, 6, 14, 20, 50, 70, 182, 252, 672, 924, 2508, 3432, 9438, 12870, 35750, 48620, 136136, 184756, 520676, 705432, 1998724, 2704156, 7696444, 10400600, 29716000, 40116600, 115000920, 155117520, 445962870 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also the number of n-step walks on a path graph ending within 2 steps of the origin. Also the number of monotonic paths of length n ending within 2 steps of the diagonal. LINKS Robert Israel, Table of n, a(n) for n = 0..3323 FORMULA a(n) = A128014(n+1) + ((n+1) mod 2)*2*A001791(ceiling(n/2)). D-finite with recurrence +(n+2)*a(n) +n*a(n-1) +(-5*n-2)*a(n-2) +4*(-n+1)*a(n-3) +4*(n-3)*a(n-4)=0. - Conjectured by R. J. Mathar, Sep 27 2020, verified by Robert Israel, Oct 08 2020 G.f.: ((4*x + 2)*sqrt(-4*x^2 + 1) + 4*x^2 + 4*x + 2)/(sqrt(-4*x^2 + 1)*(1 + sqrt(-4*x^2 + 1))^2). - Robert Israel, Oct 08 2020 MAPLE f:= gfun:-rectoproc({(4 + 4*n)*a(n) + (-12 - 4*n)*a(1 + n) + (-22 - 5*n)*a(2 + n) + (n + 4)*a(n + 3) + (6 + n)*a(n + 4), a(0) = 1, a(1) = 2, a(2) = 4, a(3) = 6}, a(n), remember): map(f, [\$0..100]); # Robert Israel, Oct 08 2020 CROSSREFS Cf. A001791, A128014. Bisections give A000984 (odd part, starting from second element), A051924 (even part). Sequence in context: A032353 A062112 A226302 * A284886 A249339 A332754 Adjacent sequences:  A337496 A337497 A337498 * A337500 A337501 A337502 KEYWORD nonn,walk AUTHOR Nachum Dershowitz, Aug 29 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 16:02 EST 2021. Contains 340352 sequences. (Running on oeis4.)