login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332754
a(n) = Sum_{k=1..n-1} ((-1)^(k+n+1)*binomial(k,floor(k/2))).
1
0, 1, 1, 2, 4, 6, 14, 21, 49, 77, 175, 287, 637, 1079, 2353, 4082, 8788, 15522, 33098, 59280, 125476, 227240, 478192, 873886, 1830270, 3370030, 7030570, 13027730, 27088870, 50469890, 104647630, 195892565, 405187825, 761615285, 1571990935, 2965576715
OFFSET
1,4
COMMENTS
a(n) is the sum of the alternating series of central binomial coefficients (including all rows, defined as binomial(m,floor(m/2)) or equivalently binomial(m,ceiling(m/2)) for all m odd, A001405).
LINKS
FORMULA
a(n) = Sum_{k=1..n-1} ((-1)^(k+n+1)*binomial(k,floor(k/2))).
From Robert Israel, Oct 08 2020: (Start)
D-finite with recurrence: (4*n - 8)*a(n - 3) + (-6 + 4*n)*a(n - 2) + (-n + 2)*a(n - 1) - n*a(n) = 0.
G.f. (sqrt((1+2*x)/(1-2*x))-1-2*x)/(2+2*x). (End)
MAPLE
f:= gfun:-rectoproc({(4*n + 4)*a(n) + (6 + 4*n)*a(n + 1) + (-n - 1)*a(n + 2) + (-n - 3)*a(n + 3), a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 1}, a(n), remember):
map(f, [$1..100]); # Robert Israel, Oct 08 2020
MATHEMATICA
Sum[(-1)^(k + n + 1) Binomial[k, Floor[k/2]], {k, 1, -1 + n}]
PROG
(PARI) a(n) = sum(k=1, n-1, (-1)^(k+n+1)*binomial(k, k\2)); \\ Michel Marcus, Feb 22 2020
CROSSREFS
Sequence in context: A337499 A284886 A249339 * A307676 A084685 A219042
KEYWORD
nonn
AUTHOR
Brian P Hawkins, Feb 22 2020
STATUS
approved