login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n-1} ((-1)^(k+n+1)*binomial(k,floor(k/2))).
1

%I #16 Oct 09 2020 05:17:38

%S 0,1,1,2,4,6,14,21,49,77,175,287,637,1079,2353,4082,8788,15522,33098,

%T 59280,125476,227240,478192,873886,1830270,3370030,7030570,13027730,

%U 27088870,50469890,104647630,195892565,405187825,761615285,1571990935,2965576715

%N a(n) = Sum_{k=1..n-1} ((-1)^(k+n+1)*binomial(k,floor(k/2))).

%C a(n) is the sum of the alternating series of central binomial coefficients (including all rows, defined as binomial(m,floor(m/2)) or equivalently binomial(m,ceiling(m/2)) for all m odd, A001405).

%H Robert Israel, <a href="/A332754/b332754.txt">Table of n, a(n) for n = 1..3326</a>

%F a(n) = Sum_{k=1..n-1} ((-1)^(k+n+1)*binomial(k,floor(k/2))).

%F From _Robert Israel_, Oct 08 2020: (Start)

%F D-finite with recurrence: (4*n - 8)*a(n - 3) + (-6 + 4*n)*a(n - 2) + (-n + 2)*a(n - 1) - n*a(n) = 0.

%F G.f. (sqrt((1+2*x)/(1-2*x))-1-2*x)/(2+2*x). (End)

%p f:= gfun:-rectoproc({(4*n + 4)*a(n) + (6 + 4*n)*a(n + 1) + (-n - 1)*a(n + 2) + (-n - 3)*a(n + 3), a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 1},a(n),remember):

%p map(f, [$1..100]); # _Robert Israel_, Oct 08 2020

%t Sum[(-1)^(k + n + 1) Binomial[k, Floor[k/2]], {k, 1, -1 + n}]

%o (PARI) a(n) = sum(k=1, n-1, (-1)^(k+n+1)*binomial(k, k\2)); \\ _Michel Marcus_, Feb 22 2020

%K nonn

%O 1,4

%A _Brian P Hawkins_, Feb 22 2020