login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332751
The number of flips to go from Hamiltonian cycle beta_n to gamma_n in the Cameron graph of size n using Thomason's algorithm.
2
6, 28, 108, 400, 1486, 5516, 20464, 75912, 281590, 1044532, 3874588, 14372392, 53312926, 197758868, 733566368, 2721089680, 10093604838, 37441198412, 138884309516, 515177191104, 1910997283694, 7088649655580, 26294623424272, 97537225651992, 361804397590486, 1342076537863268
OFFSET
1,1
FORMULA
G.f.: 2*z*(3+2*z+z^2-2*z^3) / ((1-z)*(1-3*z-2*z^2-2*z^3-z^4-z^5)).
a(n) = 4*a(n-1) - a(n-2) - a(n-4) - a(n-6) for n>6. - Colin Barker, Feb 22 2020
MATHEMATICA
LinearRecurrence[{4, -1, 0, -1, 0, -1}, {6, 28, 108, 400, 1486, 5516}, 20] (* Jinyuan Wang, Feb 22 2020 *)
PROG
(PARI) Vec(2*z*(3 + 2*z + z^2 - 2*z^3) / ((1 - z)*(1 - 3*z - 2*z^2 - 2*z^3 - z^4 - z^5)) + O(z^30)) \\ Colin Barker, Feb 22 2020
CROSSREFS
Cf. A332750 (number of flips from alpha_n to beta_n, same growth rate).
Sequence in context: A117999 A234617 A028379 * A263942 A326138 A326131
KEYWORD
nonn,easy
AUTHOR
Filip Stappers, Feb 22 2020
EXTENSIONS
More terms from Jinyuan Wang, Feb 22 2020
STATUS
approved