login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number of flips to go from Hamiltonian cycle beta_n to gamma_n in the Cameron graph of size n using Thomason's algorithm.
2

%I #23 Mar 18 2020 13:01:42

%S 6,28,108,400,1486,5516,20464,75912,281590,1044532,3874588,14372392,

%T 53312926,197758868,733566368,2721089680,10093604838,37441198412,

%U 138884309516,515177191104,1910997283694,7088649655580,26294623424272,97537225651992,361804397590486,1342076537863268

%N The number of flips to go from Hamiltonian cycle beta_n to gamma_n in the Cameron graph of size n using Thomason's algorithm.

%H Colin Barker, <a href="/A332751/b332751.txt">Table of n, a(n) for n = 1..1000</a>

%H K. Cameron, <a href="https://doi.org/10.1016/S0012-365X(00)00260-0">Thomason's algorithm for finding a second hamiltonian circuit through a given edge in a cubic graph is exponential on Krawczyk's graphs</a>, Discrete Mathematics (235), 2001, pp. 69-77.

%H Donald Knuth, <a href="https://www-cs-faculty.stanford.edu/~knuth/fasc8a.ps.gz">The Art of Computer Programming, Pre-fascicle 8a, Hamiltonian paths and cycles</a>, exercise 77, pp. 16, 26-27 (retrieved Feb 22 2020).

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (4,-1,0,-1,0,-1).

%F G.f.: 2*z*(3+2*z+z^2-2*z^3) / ((1-z)*(1-3*z-2*z^2-2*z^3-z^4-z^5)).

%F a(n) = 4*a(n-1) - a(n-2) - a(n-4) - a(n-6) for n>6. - _Colin Barker_, Feb 22 2020

%t LinearRecurrence[{4, -1, 0, -1, 0, -1}, {6, 28, 108, 400, 1486, 5516}, 20] (* _Jinyuan Wang_, Feb 22 2020 *)

%o (PARI) Vec(2*z*(3 + 2*z + z^2 - 2*z^3) / ((1 - z)*(1 - 3*z - 2*z^2 - 2*z^3 - z^4 - z^5)) + O(z^30)) \\ _Colin Barker_, Feb 22 2020

%Y Cf. A332750 (number of flips from alpha_n to beta_n, same growth rate).

%K nonn,easy

%O 1,1

%A _Filip Stappers_, Feb 22 2020

%E More terms from _Jinyuan Wang_, Feb 22 2020