login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337496
Number of bases b for which the expansion of n in base b contains the largest digit possible (i.e., the digit b-1).
8
0, 1, 2, 2, 2, 3, 3, 4, 3, 3, 2, 5, 3, 4, 5, 5, 3, 5, 3, 6, 5, 5, 4, 8, 4, 4, 4, 5, 3, 8, 4, 6, 5, 5, 6, 8, 2, 3, 4, 7, 2, 7, 4, 7, 8, 7, 6, 11, 6, 7, 5, 6, 4, 8, 6, 8, 6, 6, 5, 12, 5, 6, 8, 7, 5, 7, 4, 7, 5, 9, 5, 12, 5, 6, 7, 7, 7, 9, 5, 11, 5, 3, 2, 11, 4, 3, 4, 8, 3, 11, 5
OFFSET
0,3
COMMENTS
An integer b > 1 is a main base of n if n in base b contains the largest digit possible (i.e., the digit b-1).
2 is a main base for all nonzero integers because in binary, they start with the digit 1.
10 is a main base for all numbers with a 9 in their decimal expansion.
b = n+1 is a main base of n when n > 0.
A000005(n+1) - 1 <= a(n) <= ceiling(sqrt(n+1)) + floor(A000005(n+1)/2) - 1 for n > 0. Indeed, if b != 1 is a divisor of n+1 then n = (k-1)*b + b-1 so the last digit of n in base b is b-1. On the other side, n = q*b + r with r < b. So if b is a main base of n then either r = b-1 (and b is a divisor of n+1) or b is a main base of q and therefore b-1 <= q which implies (b-1)^2 < n (i.e., b <= floor(sqrt(n))+1 <= ceiling(sqrt(n+1)) ). But if b > sqrt(n+1) is a divisor of (n+1) then (n+1)/b < sqrt(n+1) is another divisors of n+1 and only half of them can be greater than its square root. - François Marques, Dec 07 2020
FORMULA
a(n) <= (n+1)/2 for n >= 3. - Devansh Singh, Sep 21 2020
EXAMPLE
For n = 7, a(7) = 4 because the main bases of 7 are 2, 3, 4 and 8 as shown in the table below:
Base b | 2 | 3 | 4 | 5 | 6 | 7 | 8
-----------------+-----+-----+-----+-----+-----+-----+-----
7 in base b | 111 | 21 | 13 | 12 | 11 | 10 | 7
-----------------+-----+-----+-----+-----+-----+-----+-----
b is a main base | yes | yes | yes | no | no | no | yes
MAPLE
A337496 := proc(n)
local k, r:=0;
for k from 2 to n+1 do
if max(convert(n, base, k)) = k - 1 then
r++;
end if;
end do;
return r;
end proc:
seq(A337496(n), n=0..90);
MATHEMATICA
baseQ[n_, b_] := MemberQ[IntegerDigits[n, b], b - 1]; a[n_] := Count[Range[2, n + 1], _?(baseQ[n, #] &)]; Array[a, 100, 0] (* Amiram Eldar, Sep 01 2020 *)
PROG
(PARI) a(n) = sum(b=2, n+1, vecmax(digits(n, b)) == b-1); \\ Michel Marcus, Aug 30 2020
(PARI) a337496(n) = my(last_pos(v, k) = forstep(j=#v, 1, -1, if(v[j]==k, return(#v-j))); return(-1); , s=ceil(sqrt(n+1)), p); (n==0) + 1 + sum(b=2, s, p=last_pos(digits(n, b), b-1); if(p<0, 0, p==0, 2, 1)) -((n+1)==s^2) -2*((n+1)==s*(s-1)); \\ François Marques, Dec 07 2020
(Python)
def A337496(N):
A337496_n=[0, 1]
for j in range(2, N+1):
A337496_n.append(2)
for b in range(3, ((N+1)//2) +1):
n=2*b-1
while n<=N:
s=0
m=n//b
while m%b==b-2:
s=s+1
m=m//b
x=b*((b**s)-1)//(b-1)
for i in range(n, min(N, x+n)+1):
A337496_n[i]+=1
n=n+x+b
return(A337496_n)
print(A337496(100)) # Devansh Singh, Dec 30 2020
CROSSREFS
Cf. A077268 (contains digit 0).
Sequence in context: A238337 A104484 A038809 * A078342 A177903 A107325
KEYWORD
nonn,base,look
AUTHOR
François Marques, Aug 29 2020
EXTENSIONS
Minor edits by M. F. Hasler, Oct 26 2020
STATUS
approved