login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A337494 Smallest m such that prime(3*n)# can be written as a product of n sphenic numbers each <= m. 0
30, 182, 627, 1705, 3741, 7285, 13039, 21889, 33611, 51389, 74497, 104081, 140491, 188641, 246089, 312547, 394831, 491713, 604283, 736189, 886937, 1058581, 1249331, 1474531 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
a(n) >= ceiling((prime(3*n)#)^(1/n)). - Chai Wah Wu, Sep 24 2020
LINKS
EXAMPLE
a(4) = 1705.
p(3*4)#, which is the product of the first 12 primes, can be written as
s1 * s2 * s3 * s4 with
s1 = 5 * 11 * 31 = 1705,
s2 = 2 * 23 * 37 = 1702,
s3 = 3 * 19 * 29 = 1653,
s4 = 7 * 13 * 17 = 1547.
No such factorization is possible in sphenic numbers that are all < 1705.
CROSSREFS
Sequence in context: A156318 A042758 A071311 * A265037 A249001 A249466
KEYWORD
nonn,more
AUTHOR
Bert Dobbelaere, Aug 29 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 9 03:44 EDT 2024. Contains 375759 sequences. (Running on oeis4.)