|
|
A337237
|
|
Odd composite integers such that A052918(m-1)^2 == 1 (mod m).
|
|
4
|
|
|
9, 15, 25, 27, 35, 45, 65, 75, 91, 121, 135, 143, 175, 225, 275, 325, 385, 455, 533, 595, 615, 675, 935, 1035, 1107, 1325, 1359, 1431, 1495, 1547, 1573, 1935, 2015, 2255, 2275, 2775, 3025, 3059, 3575, 3605, 4025, 4081, 4235, 4355, 5005, 5089, 5475, 5525, 5719, 5993, 6165
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
If p is a prime, then A052918(p-1)^2 == 1 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Lucas sequence of integer parameters (a,b) defined by U(n+2) = a*U(n+1)-b*U(n) and U(0)=0, U(1)=1, satisfies the identity U^2(p) == 1 (mod p) whenever p is prime and b=-1,1 (this property is a form of pseudoprimality).
For a=5, b=-1, U(n) recovers A052918(n-1), for n=1,2,....
|
|
REFERENCES
|
D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020)
D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)
|
|
LINKS
|
|
|
MATHEMATICA
|
Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 5]*Fibonacci[#, 5] - 1, #] &]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|