login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A337237 Odd composite integers such that A052918(m-1)^2 == 1 (mod m). 4
9, 15, 25, 27, 35, 45, 65, 75, 91, 121, 135, 143, 175, 225, 275, 325, 385, 455, 533, 595, 615, 675, 935, 1035, 1107, 1325, 1359, 1431, 1495, 1547, 1573, 1935, 2015, 2255, 2275, 2775, 3025, 3059, 3575, 3605, 4025, 4081, 4235, 4355, 5005, 5089, 5475, 5525, 5719, 5993, 6165 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
If p is a prime, then A052918(p-1)^2 == 1 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Lucas sequence of integer parameters (a,b) defined by U(n+2) = a*U(n+1)-b*U(n) and U(0)=0, U(1)=1, satisfies the identity U^2(p) == 1 (mod p) whenever p is prime and b=-1,1 (this property is a form of pseudoprimality).
For a=5, b=-1, U(n) recovers A052918(n-1), for n=1,2,....
REFERENCES
D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020)
D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)
LINKS
Dorin Andrica and Ovidiu Bagdasar, On Generalized Lucas Pseudoprimality of Level k, Mathematics (2021) Vol. 9, 838.
MATHEMATICA
Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 5]*Fibonacci[#, 5] - 1, #] &]
CROSSREFS
Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337233 (a=2), A337234 (a=3, odd terms), A337235 (a=3, even terms), A337236 (a=4).
Sequence in context: A164384 A138193 A330947 * A036315 A340120 A020154
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Aug 20 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 23:23 EDT 2023. Contains 365739 sequences. (Running on oeis4.)