OFFSET
1,1
COMMENTS
If p is a prime, then A006190(p)^2 == 1 (mod p).
This sequence contains the even composite integers for which the congruence holds.
The generalized Lucas sequence of integer parameters (a,b) defined by U(n+2) = a*U(n+1)-b*U(n) and U(0)=0, U(1)=1, satisfies the identity U^2(p) == 1 (mod p) whenever p is prime and b=-1,1.
For a=3, b=-1, U(n) recovers A006190(n) ("Bronze" Fibonacci numbers).
REFERENCES
D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).
LINKS
D. Andrica and O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, preprint for Mediterr. J. Math. 18, 47 (2021).
MATHEMATICA
Select[Range[3, 25000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 5]*Fibonacci[#, 5] - 1, #] &]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Aug 20 2020
EXTENSIONS
More terms from Amiram Eldar, Aug 21 2020
a(18)-a(32) from Daniel Suteu, Aug 29 2020
STATUS
approved