OFFSET
1,1
COMMENTS
If p is a prime, then A000045(p)^2 == 1 (mod p).
This sequence contains the even integers for which the congruence holds.
The generalized Lucas sequence of integer parameters (a,b) defined by U(n+2) = a*U(n+1)-b*U(n) and U(0)=0, U(1)=1, satisfies the identity U^2(p) == 1 (mod p) whenever p is prime and b=1,-1.
For a=1, b=-1, U(n) recovers A000045(n) (Fibonacci numbers).
No terms divisible by 3. - Robert Israel, Sep 15 2020
REFERENCES
D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
D. Andrica and O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, preprint for Mediterr. J. Math. 18, 47 (2021).
MAPLE
select(t -> combinat:-fibonacci(t) &^ 2 - 1 mod t = 0, 2*[$2..1000]); # Robert Israel, Sep 15 2020
MATHEMATICA
Select[Range[2, 2000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 1]*Fibonacci[#, 1] - 1, #] &]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Aug 20 2020
STATUS
approved