login
A337232
Even composite integers m such that F(m)^2 == 1 (mod m), where F(m) is the m-th Fibonacci number.
9
4, 8, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 88, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514, 526
OFFSET
1,1
COMMENTS
If p is a prime, then A000045(p)^2 == 1 (mod p).
This sequence contains the even integers for which the congruence holds.
The generalized Lucas sequence of integer parameters (a,b) defined by U(n+2) = a*U(n+1)-b*U(n) and U(0)=0, U(1)=1, satisfies the identity U^2(p) == 1 (mod p) whenever p is prime and b=1,-1.
For a=1, b=-1, U(n) recovers A000045(n) (Fibonacci numbers).
No terms divisible by 3. - Robert Israel, Sep 15 2020
REFERENCES
D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).
LINKS
D. Andrica and O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, preprint for Mediterr. J. Math. 18, 47 (2021).
MAPLE
select(t -> combinat:-fibonacci(t) &^ 2 - 1 mod t = 0, 2*[$2..1000]); # Robert Israel, Sep 15 2020
MATHEMATICA
Select[Range[2, 2000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 1]*Fibonacci[#, 1] - 1, #] &]
CROSSREFS
Cf. A000045, A337231 (odd terms).
Sequence in context: A312705 A312706 A312707 * A004797 A053459 A024398
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Aug 20 2020
STATUS
approved