login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A337231 Odd composite integers m such that F(m)^2 == 1 (mod m), where F(m) is the m-th Fibonacci number. 11
231, 323, 377, 1443, 1551, 1891, 2737, 2849, 3289, 3689, 3827, 4181, 4879, 5777, 6479, 6601, 6721, 7743, 8149, 9879, 10877, 11663, 13201, 13981, 15251, 15301, 17119, 17261, 17711, 18407, 19043, 20999, 23407, 25877, 27071, 27323, 29281, 30889, 34561, 34943, 35207 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

If p is a prime, then A000045(p)^2==1 (mod p).

This sequence contains the odd composite integers for which the congruence holds.

The generalized Lucas sequence of integer parameters (a,b) defined by U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1, satisfies the identity U^2(p)==1 (mod p) whenever p is prime and b=-1.

For a=1, b=-1, U(n) recovers A000045(n) (Fibonacci numbers).

REFERENCES

D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020)

D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..1000

Dorin Andrica and Ovidiu Bagdasar, On Generalized Lucas Pseudoprimality of Level k, Mathematics (2021) Vol. 9, 838.

MATHEMATICA

Select[Range[3, 30000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 1]*Fibonacci[#, 1] - 1, #] &]

CROSSREFS

Cf. A000045.

Sequence in context: A088289 A046009 A350367 * A117223 A160355 A211712

Adjacent sequences: A337228 A337229 A337230 * A337232 A337233 A337234

KEYWORD

nonn

AUTHOR

Ovidiu Bagdasar, Aug 20 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 27 18:55 EDT 2023. Contains 361575 sequences. (Running on oeis4.)