login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337231
Odd composite integers m such that F(m)^2 == 1 (mod m), where F(m) is the m-th Fibonacci number.
11
231, 323, 377, 1443, 1551, 1891, 2737, 2849, 3289, 3689, 3827, 4181, 4879, 5777, 6479, 6601, 6721, 7743, 8149, 9879, 10877, 11663, 13201, 13981, 15251, 15301, 17119, 17261, 17711, 18407, 19043, 20999, 23407, 25877, 27071, 27323, 29281, 30889, 34561, 34943, 35207
OFFSET
1,1
COMMENTS
If p is a prime, then A000045(p)^2==1 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Lucas sequence of integer parameters (a,b) defined by U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1, satisfies the identity U^2(p)==1 (mod p) whenever p is prime and b=-1.
For a=1, b=-1, U(n) recovers A000045(n) (Fibonacci numbers).
REFERENCES
D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).
LINKS
Dorin Andrica and Ovidiu Bagdasar, On Generalized Lucas Pseudoprimality of Level k, Mathematics (2021) Vol. 9, 838.
D. Andrica and O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, preprint for Mediterr. J. Math. 18, 47 (2021).
MATHEMATICA
Select[Range[3, 30000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 1]*Fibonacci[#, 1] - 1, #] &]
PROG
(PARI) lista(nn) = my(list=List()); forcomposite(c=1, nn, if ((c%2) && (Mod(fibonacci(c), c)^2 == 1), listput(list, c))); Vec(list); \\ Michel Marcus, Sep 29 2023
CROSSREFS
Cf. A000045.
Sequence in context: A088289 A046009 A350367 * A117223 A160355 A211712
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Aug 20 2020
STATUS
approved