login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350367
Triangular numbers that are the sum of two distinct nonzero triangular numbers in more than one way.
0
231, 276, 406, 666, 861, 1081, 1225, 1431, 1711, 1891, 2211, 2556, 3081, 3741, 3916, 4186, 4371, 4560, 4656, 5151, 5356, 5671, 5886, 6786, 7021, 7381, 7875, 8001, 8128, 8256, 8778, 9316, 10731, 11781, 12246, 12561, 12720, 13366, 13861, 14196, 14706, 15576
OFFSET
1,1
EXAMPLE
231 = 21 + 210 = 78 + 153.
276 = 45 + 231 = 66 + 210 = 105 + 171.
MATHEMATICA
(P=PolygonalNumber)[3, Select[Range@176, Length@Select[Subsets[P[3, Range[s=#]], {2}], Total@#==P[3, s]&]>1&]] (* Giorgos Kalogeropoulos, Dec 31 2021 *)
PROG
(Python)
from collections import Counter
from itertools import count, takewhile, combinations as combs
def aupto(limit):
tris = takewhile(lambda x: x <= limit, (k*(k+1)//2 for k in count(1)))
trilst = list(tris); triset = set(trilst)
tri2ct = Counter(sum(c) for c in combs(trilst, 2) if sum(c) in triset)
return sorted(t for t in tri2ct if t <= limit and tri2ct[t] > 1)
print(aupto(16000)) # Michael S. Branicky, Dec 27 2021
CROSSREFS
Intersection of A000217 and A262749.
Sequence in context: A345795 A088289 A046009 * A337231 A117223 A160355
KEYWORD
nonn
AUTHOR
Shyam Sunder Gupta, Dec 27 2021
STATUS
approved