login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089982
Triangular numbers that can be expressed as the sum of 2 positive triangular numbers.
7
6, 21, 36, 55, 66, 91, 120, 136, 171, 210, 231, 276, 351, 378, 406, 496, 561, 666, 703, 741, 820, 861, 946, 990, 1035, 1081, 1176, 1225, 1326, 1378, 1431, 1485, 1540, 1596, 1653, 1711, 1770, 1891, 1953, 2016, 2080, 2211, 2278, 2346, 2556, 2701, 2775, 2850
OFFSET
1,1
COMMENTS
Intersection of triangular numbers with sumset of triangular numbers. Triangular number analog of what for squares is {A057100(n)^2} = {A009000(n)^2}. {A000217} INTERSECT {A000217 + A000217}. - Jonathan Vos Post, Mar 09 2007
A subsequence of A051533. - Wolfdieter Lang, Jan 11 2017
LINKS
FORMULA
Triangular number m is in this sequence iff A000161(4*m+1)>1 or, alternatively, A083025(4*m+1)>1. - Max Alekseyev, Oct 24 2008
a(n) = A000217(A012132(n)). - Ivan N. Ianakiev, Jan 17 2013
EXAMPLE
Generally, A000217(A000217(n)) = A000217(A000217(n)-1) + A000217(n) and so is automatically included. These are 6=T(3), 21=T(6), 55=T(10), etc. Other solutions occur when a partial sum from x to y is triangular, e.g., 15 + 16 + 17 + 18 = 66 = T(11), so T(14) + T(11) = T(18). This particular example arises since 10+4k is triangular (at k=14, 10 + 4k = 66), and we therefore have a solution.
All other solutions occur when 3+2k, 6+3k, 10+4k, etc. -- in general, T(j) + j*k -- is triangular.
MATHEMATICA
trn[i_]:=Module[{trnos=Accumulate[Range[i]], t2s}, t2s=Union[Total/@ Tuples[ trnos, 2]]; Intersection[trnos, t2s]] (* Harvey P. Dale, Nov 08 2011 *)
Select[Range[75], ! PrimeQ[#^2 + (# + 1)^2] &] /. Integer_ -> (Integer^2 + Integer)/2 (* Arkadiusz Wesolowski, Dec 03 2015 *)
PROG
(PARI) t(i) = i*(i+1)/2;
{ v=vector(100, i, t(i)); y=vector(100); c=0; for (i=1, 30, for (j=i, 30, x=t(i)+t(j); f=0; for (k=1, 100, if (x==v[k], f=1; break)); if (f==1, y[c++ ]=x))); select(x->(x>0), vecsort(y, , 8)) } \\ slightly edited by Michel Marcus, Apr 15 2021
(PARI) lista(nn) = {for (n=1, nn, my(t = n*(n+1)/2); for (k=1, n-1, if (ispolygonal(t - k*(k+1)/2, 3), print1(t, ", "); break; )); ); } \\ Michel Marcus, Apr 15 2021
(Python)
from itertools import count, takewhile
def aupto(lim):
t = list(takewhile(lambda x: x<=lim, (i*(i+1)//2 for i in count(1))))
s = set(a+b for i, a in enumerate(t) for b in t[i:])
return sorted(s & set(t))
print(aupto(3000)) # Michael S. Branicky, Jun 21 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jon Perry, Jan 13 2004
EXTENSIONS
More terms from Lambert Klasen (Lambert.Klasen(AT)gmx.net) and David Wasserman, Sep 23 2005
STATUS
approved