The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A340120 Odd composite integers m such that A052918(2*m-J(m,29)) == 1 (mod m), where J(m,29) is the Jacobi symbol. 4
 9, 15, 25, 27, 45, 75, 91, 121, 125, 135, 143, 147, 175, 225, 275, 325, 375, 441, 483, 625, 675, 735, 755, 1125, 1323, 1547, 1573, 1875, 1935, 2015, 2205, 2275, 2485, 2943, 3025, 3125, 3375, 3575, 3675, 3775, 3843, 4375, 5525, 5625, 5819, 6543, 6615, 6721 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(2*p-J(p,D)) == 1 (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4. The composite integers m with the property U(k*m-J(m,D)) == U(k-1) (mod m) are called generalized Lucas pseudoprimes of level k- and parameter a. Here b=-1, a=5, D=29 and k=2, while U(m) is A052918(m). REFERENCES D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020. D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021). D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted). LINKS Table of n, a(n) for n=1..48. Dorin Andrica, Vlad Crişan, and Fawzi Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing, Arab Journal of Mathematical Sciences, 2018, 24(1), 9--15. MATHEMATICA Select[Range[3, 15000, 2], CoprimeQ[#, 29] && CompositeQ[#] && Divisible[Fibonacci[2*#-JacobiSymbol[#, 29], 5] - 1, #] &] CROSSREFS Cf. A052918, A071904, A340095 (a=5, b=-1, k=1). Cf. A340118 (a=1, b=-1, k=2), A340119 (a=3, b=-1, k=2), A340121 (a=7, b=-1, k=2). Sequence in context: A330947 A337237 A036315 * A020154 A079290 A176404 Adjacent sequences: A340117 A340118 A340119 * A340121 A340122 A340123 KEYWORD nonn AUTHOR Ovidiu Bagdasar, Dec 28 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 23:23 EDT 2023. Contains 365739 sequences. (Running on oeis4.)