login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A340118 Odd composite integers m such that A000045(2*m-J(m,5)) == 1 (mod m), where J(m,5) is the Jacobi symbol. 4
323, 377, 609, 1891, 3081, 3827, 4181, 5777, 5887, 6601, 6721, 8149, 10877, 11663, 13201, 13601, 13981, 15251, 17119, 17711, 18407, 19043, 23407, 25877, 27323, 28441, 28623, 30889, 32509, 34561, 34943, 35207, 39203, 40501 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(2*p-J(p,D)) == 1 (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.

The composite integers m with the property U(k*m-J(m,D)) == U(k-1) (mod m) are called generalized Lucas pseudoprimes of level k- and parameter a. Here b=-1, a=1, D=5 and k=2, while U(m) is A000045(m) (Fibonacci sequence).

REFERENCES

D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.

D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).

D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

LINKS

Table of n, a(n) for n=1..34.

Dorin Andrica, Vlad Cri┼čan, and Fawzi Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing, Arab Journal of Mathematical Sciences, 2018, 24(1), 9--15.

MATHEMATICA

Select[Range[3, 50000, 2], CoprimeQ[#, 5] && CompositeQ[#] && Divisible[Fibonacci[2*#-JacobiSymbol[#, 5], 1] - 1, #] &]

CROSSREFS

Cf. A000045, A071904, A081264 (a=1, b=-1, k=1), A327653 (a=3, b=-1, k=1).

Cf. A340119 (a=3, b=-1, k=2), A340120 (a=5, b=-1, k=2), A340121 (a=7, b=-1, k=2).

Sequence in context: A082947 A082948 A182554 * A339517 A217120 A081264

Adjacent sequences:  A340115 A340116 A340117 * A340119 A340120 A340121

KEYWORD

nonn

AUTHOR

Ovidiu Bagdasar, Dec 28 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 2 21:30 EDT 2021. Contains 346429 sequences. (Running on oeis4.)