OFFSET
1,1
FORMULA
T(n, k) = 9*Pochhammer(11-k, k-1)*n! * [x^n] (exp(x) - 1)^k/k!.
T(n, k) = 9*Pochhammer(11-k, k-1) * [x^n] x^k/Product_{j=1..k} (1-j*x).
T(n, k) = 9*Pochhammer(11-k, k-1)*S2(n, k) where S2(n, k) = A048993(n, k) are the Stirling numbers of the 2nd kind.
EXAMPLE
The table T(n, k) begins:
9 0 0 0 0 0 0 0 0 0
9 81 0 0 0 0 0 0 0 0
9 243 648 0 0 0 0 0 0 0
9 567 3888 4536 0 0 0 0 0 0
9 1215 16200 45360 27216 0 0 0 0 0
9 2511 58320 294840 408240 136080 0 0 0 0
...
MATHEMATICA
T[n_, k_]:=9Pochhammer[11-k, k-1]/k!*n!*Coefficient[Series[(Exp[x]-1)^k, {x, 0, n}], x, n]; Table[T[n, k], {n, 7}, {k, 10}]//Flatten
CROSSREFS
KEYWORD
nonn,tabf,base
AUTHOR
Stefano Spezia, Aug 17 2020
STATUS
approved