login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337126
Irregular triangular array read by rows. T(n,k) is the number of permutations of {1,2,...,n} with descent set {1,3,5,...,m} (where m is the greatest odd integer less than n) that have exactly k inversions, n=0, k=0, or n>0, 0<=k<=ceiling((n-1)^2/2).
2
1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 2, 1, 0, 0, 1, 2, 3, 4, 3, 2, 1, 0, 0, 0, 1, 2, 5, 7, 9, 10, 10, 8, 5, 3, 1, 0, 0, 0, 1, 3, 7, 13, 19, 26, 32, 35, 35, 32, 26, 19, 13, 7, 3, 1, 0, 0, 0, 0, 1, 3, 9, 18, 32, 50, 72, 95, 117, 134, 143, 145, 138, 122, 101, 78, 55, 36, 21, 10, 4, 1
OFFSET
0,12
REFERENCES
R. Stanley, Enumerative Combinatorics, volume 1, second edition, Cambridge University Press (2012), p.295.
LINKS
FORMULA
Sum_{k=1..ceiling((n-1)^2/2)} k * T(n,k) = A337193(n).
EXAMPLE
Triangle T(n,k) begins:
1;
1;
0, 1;
0, 1, 1;
0, 0, 1, 1, 2, 1;
0, 0, 1, 2, 3, 4, 3, 2, 1;
0, 0, 0, 1, 2, 5, 7, 9, 10, 10, 8, 5, 3, 1;
...
T(6,5) = 5 because we have: {2, 1, 5, 4, 6, 3}, {2, 1, 6, 3, 5, 4},
{3, 1, 5, 2, 6, 4}, {3, 2, 4, 1, 6, 5}, {4, 1, 3, 2, 6, 5}.
MAPLE
b:= proc(u, o, t) option remember; expand(`if`(u+o=0, 1, add(
x^`if`(t=0, o-1+j, u-j)*b(o-1+j, u-j, 1-t), j=1..u)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
seq(T(n), n=0..10); # Alois P. Heinz, Aug 17 2020
MATHEMATICA
Table[a = Drop[Subsets[Table[i, {i, 1, n - 1, 2}]], 1]; f[list_] := (-1)^(Floor[n/2] - Length[list]) QBinomial[n, list[[1]], q] Product[
QBinomial[n - list[[i]], list[[i + 1]] - list[[i]], q], {i, 1,
Length[list] - 1}]; CoefficientList[Expand[FunctionExpand[Total[Map[f, a]] + (-1)^(Floor[n/2])]], q], {n, 0, 8}] // Grid
(* Second program: *)
b[u_, o_, t_] := b[u, o, t] = Expand[If[u + o == 0, 1, Sum[x^If[t == 0, o - 1 + j, u - j]*b[o - 1 + j, u - j, 1 - t], {j, 1, u}]]];
T[n_] := CoefficientList[b[n, 0, 0], x];
T /@ Range[0, 10] // Flatten (* Jean-François Alcover, Jan 02 2021, after Alois P. Heinz *)
CROSSREFS
Cf. A000111 (row sums), A337193 (total number of inversions).
Sequence in context: A061670 A236412 A236263 * A319572 A108063 A164846
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Aug 17 2020
STATUS
approved