OFFSET
0,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
FORMULA
T(n,0) = 2^n.
T(n,k) = ((3+sqrt(5))^(k+1)-(3-sqrt(5))^(k+1))*(2^(n-k))/(4*sqrt(5)) for 1<=k<=n.
T(n+1,n) = 2*T(n,n).
T(n+m,n) = 2^m*T(n,n), for m>=1.
G.f.: (1 - x*y)*(1 - 2*x*y)/((1 - 6*x*y + 4*x^2*y^2)*(1 - 2*x)). - Andrew Howroyd, Sep 23 2020
EXAMPLE
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5
0: 1
1: 2 3
2: 4 6 16
3: 8 12 32 84
4: 16 24 64 168 440
5: 32 48 128 336 880 2304
...
T(3,2) = ((3+sqrt(5))^3-(3-sqrt(5))^3)*(2)/(4*sqrt(5)) = (64*sqrt(5))/(2*sqrt(5)) = 32.
MAPLE
T := proc (n, k) if k = 0 and 0 <= n then 2^n elif 1 <= k and k <= n then round((((3+sqrt(5))^(k+1)-(3-sqrt(5))^(k+1))*(2^(n-k))/(4*sqrt(5)))) else 0 end if end proc:seq(print(seq(T(n, k), k=0..n)), n=0..9);
MATHEMATICA
T[n_, 0] := 2^n;
T[n_, n_] := 2^(n-1) Fibonacci[2n+2];
T[n_, k_] /; 0<k<n := T[n, k] = 2 T[n-1, k];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 13 2020 *)
PROG
(PARI) T(n, k) = if (k == 0, 2^n, my(w=quadgen(5, 'w)); ((2*w+2)^(k+1)-(4-2*w)^(k+1))*(2^(n-k))/(4*(2*w-1))); \\ Michel Marcus, Sep 14 2020
(PARI) Row(n)={Vecrev(polcoef((1-x*y)*(1-2*x*y)/((1-6*x*y+4*x^2*y^2)*(1-2*x)) + O(x*x^n), n))} \\ Andrew Howroyd, Sep 23 2020
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Oboifeng Dira, Sep 14 2020
STATUS
approved