login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337129
Triangular array read by rows: T(n,0) = 2^n, T(n,k) = Sum_{i=n-k..n, j=0..i-n+k, i<>n or j<>k} T(i,j) for k > 0.
1
1, 2, 3, 4, 6, 16, 8, 12, 32, 84, 16, 24, 64, 168, 440, 32, 48, 128, 336, 880, 2304, 64, 96, 256, 672, 1760, 4608, 12064, 128, 192, 512, 1344, 3520, 9216, 24128, 63168, 256, 384, 1024, 2688, 7040, 18432, 48256, 126336, 330752, 512, 768, 2048, 5376, 14080, 36864, 96512, 252672, 661504, 1731840
OFFSET
0,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
FORMULA
T(n,0) = 2^n.
T(n,k) = ((3+sqrt(5))^(k+1)-(3-sqrt(5))^(k+1))*(2^(n-k))/(4*sqrt(5)) for 1<=k<=n.
T(n+1,n) = 2*T(n,n).
T(n+m,n) = 2^m*T(n,n), for m>=1.
T(n,n) = A069429(n) = 2^(n-1)*A001906(n+1) for n>=1.
T(2*n,n) = (1/2)*A099157(n+1) = A004171(n-1)*A001906(n+1) for n>=1.
G.f.: (1 - x*y)*(1 - 2*x*y)/((1 - 6*x*y + 4*x^2*y^2)*(1 - 2*x)). - Andrew Howroyd, Sep 23 2020
EXAMPLE
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5
0: 1
1: 2 3
2: 4 6 16
3: 8 12 32 84
4: 16 24 64 168 440
5: 32 48 128 336 880 2304
...
T(3,2) = ((3+sqrt(5))^3-(3-sqrt(5))^3)*(2)/(4*sqrt(5)) = (64*sqrt(5))/(2*sqrt(5)) = 32.
MAPLE
T := proc (n, k) if k = 0 and 0 <= n then 2^n elif 1 <= k and k <= n then round((((3+sqrt(5))^(k+1)-(3-sqrt(5))^(k+1))*(2^(n-k))/(4*sqrt(5)))) else 0 end if end proc:seq(print(seq(T(n, k), k=0..n)), n=0..9);
MATHEMATICA
T[n_, 0] := 2^n;
T[n_, n_] := 2^(n-1) Fibonacci[2n+2];
T[n_, k_] /; 0<k<n := T[n, k] = 2 T[n-1, k];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 13 2020 *)
PROG
(PARI) T(n, k) = if (k == 0, 2^n, my(w=quadgen(5, 'w)); ((2*w+2)^(k+1)-(4-2*w)^(k+1))*(2^(n-k))/(4*(2*w-1))); \\ Michel Marcus, Sep 14 2020
(PARI) Row(n)={Vecrev(polcoef((1-x*y)*(1-2*x*y)/((1-6*x*y+4*x^2*y^2)*(1-2*x)) + O(x*x^n), n))} \\ Andrew Howroyd, Sep 23 2020
CROSSREFS
Cf. A000079 (1st column), A069429 (diagonal), A018903 (row sums), A001906, A004171.
Sequence in context: A204540 A280592 A330990 * A002087 A049288 A346179
KEYWORD
nonn,tabl
AUTHOR
Oboifeng Dira, Sep 14 2020
STATUS
approved