The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A337129 Triangular array read by rows: T(n,0) = 2^n, T(n,k) = Sum_{i=n-k..n, j=0..i-n+k, i<>n or j<>k} T(i,j) for k > 0. 0
 1, 2, 3, 4, 6, 16, 8, 12, 32, 84, 16, 24, 64, 168, 440, 32, 48, 128, 336, 880, 2304, 64, 96, 256, 672, 1760, 4608, 12064, 128, 192, 512, 1344, 3520, 9216, 24128, 63168, 256, 384, 1024, 2688, 7040, 18432, 48256, 126336, 330752, 512, 768, 2048, 5376, 14080, 36864, 96512, 252672, 661504, 1731840 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA T(n,0) = 2^n. T(n,k) = ((3+sqrt(5))^(k+1)-(3-sqrt(5))^(k+1))*(2^(n-k))/(4*sqrt(5)) for 1<=k<=n. T(n+1,n) = 2*T(n,n). T(n+m,n) = 2^m*T(n,n), for m>=1. T(n,n) = A069429(n) = 2^(n-1)*A001906(n+1) for n>=1. T(2*n,n) = (1/2)*A099157(n+1) = A004171(n-1)*A001906(n+1) for n>=1. G.f.: (1 - x*y)*(1 - 2*x*y)/((1 - 6*x*y + 4*x^2*y^2)*(1 - 2*x)). - Andrew Howroyd, Sep 23 2020 EXAMPLE The triangle  T(n,k) begins:    n\k  0    1    2    3    4    5    0:   1    1:   2    3    2:   4    6    16    3:   8    12   32  84    4:   16   24   64  168  440    5:   32   48   128 336  880  2304    ... T(3,2) = ((3+sqrt(5))^3-(3-sqrt(5))^3)*(2)/(4*sqrt(5)) = (64*sqrt(5))/(2*sqrt(5)) = 32. MAPLE T := proc (n, k) if k = 0 and 0 <= n then 2^n elif 1 <= k and k <= n then round((((3+sqrt(5))^(k+1)-(3-sqrt(5))^(k+1))*(2^(n-k))/(4*sqrt(5)))) else 0 end if end proc:seq(print(seq(T(n, k), k=0..n)), n=0..9); MATHEMATICA T[n_, 0] := 2^n; T[n_, n_] := 2^(n-1) Fibonacci[2n+2]; T[n_, k_] /; 0

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 16:42 EST 2021. Contains 349413 sequences. (Running on oeis4.)