|
|
A010734
|
|
Constant sequence: the all 9's sequence.
|
|
11
|
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
The digital root of 9^n gives the sequence 1, 9, 9, 9, 9, ... - Cino Hilliard, Dec 31 2004
Continued fraction expansion of (9 + sqrt(85))/2. - Bruno Berselli, Mar 15 2011
Also decimal expansion of 0.9999... = 1. - Jianing Song, Jul 12 2018
Contains "SUB[48]: 200 Terabytes of nines", proposed in Randall Munroe's xkcd Web Comic #2016 as a subsequence. - Hugo Pfoertner, Jul 15 2018
Also digits of the 10-adic integer -1. - Stefano Spezia, Jan 21 2021
|
|
LINKS
|
Table of n, a(n) for n=0..80.
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1017
Tanya Khovanova, Recursive Sequences
Randall Munroe, OEIS Submissions, xkcd Web Comic #2016, Jul 06 2018.
Anderson Norton and Michael Baldwin, Does 0.999... really equal 1?, The Math Educ. 21 (2) (2012) 58-67.
Index to divisibility sequences
Index entries for linear recurrences with constant coefficients, signature (1).
|
|
FORMULA
|
G.f.: 9/(1-x). - Bruno Berselli, Mar 15 2011
Equals A158289(n) + A199264(n). - Arkadiusz Wesolowski, Nov 30 2011
E.g.f.: 9*e^x. - Vincenzo Librandi, Jan 26 2012
|
|
MATHEMATICA
|
Table[9, {81}] (* Arkadiusz Wesolowski, Nov 30 2011 *)
IntegerDigits[10^100 - 1] (* Alonso del Arte, Jul 09 2018 *)
PadRight[{}, 120, 9] (* Harvey P. Dale, Jan 28 2020 *)
|
|
PROG
|
(PARI) a(n)=9 \\ Charles R Greathouse IV, Oct 07 2015
(Scala) List.fill(100)(9) // Alonso del Arte, Jul 08 2018
|
|
CROSSREFS
|
Sequence in context: A099646 A181693 A271880 * A180599 A291092 A066568
Adjacent sequences: A010731 A010732 A010733 * A010735 A010736 A010737
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|