login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336858
Triangle read by rows: T(n,k) = T(n,k-1) + T(n-1, k) + T(n-1,k-1) with T(n,0) = T(n, n) = 1 (n >= 0, 0 <= k <= n).
1
1, 1, 1, 1, 3, 1, 1, 5, 9, 1, 1, 7, 21, 31, 1, 1, 9, 37, 89, 121, 1, 1, 11, 57, 183, 393, 515, 1, 1, 13, 81, 321, 897, 1805, 2321, 1, 1, 15, 109, 511, 1729, 4431, 8557, 10879, 1, 1, 17, 141, 761, 3001, 9161, 22149, 41585, 52465, 1, 1, 19, 177, 1079, 4841, 17003, 48313, 112047, 206097, 258563, 1
OFFSET
0,5
COMMENTS
This is J. M. Bergot's triangular array described in A104858 with the top vertex of the triangle shifted from (1,1) to (0,0).
FORMULA
T(n,k) = T(n, k-1) + T(n-1, k) + T(n-1, k-1) for 1 <= k <= n-1 with T(n,0) = 1 = T(n,n) for n >= 0.
T(n,k) = D(n,k) - Sum_{m=1..k} b(m-1)*D(n-m, k-m) - Sum_{m=0..k-1} D(n-m, k-m-1), where D(n,k) = A008288(n,k) (square array of Delannoy numbers) and b(n) = A086616(n).
T(n,1) = A005408(n-1) = 2*n - 1 for n >= 1.
T(n,2) = A059993(n-2) = 2*n^2 - 2*n - 3 for n >= 2.
T(n,n-1) = A086616(n-1) for n >= 1.
T(n,n-2) = A035011(n-1) = A006318(n-1) - 1 for n >= 2.
Sum_{k=0..n} T(n,k) = A104858(n) for n >= 0.
Bivariate o.g.f.: (1 - y - x*y*(1 + g(x*y)))/((1 - x*y)*(1 - x - y - x*y)), where g(w) = 2/(1 - w + sqrt(1 - 6*w + w^2)) = o.g.f. of A006318 (large Schroeder numbers).
Bivariate o.g.f.: (1 - y - 2*x*y*q(x*y))/((1 - x*y)*(1 - x - y - x*y)), where q(w) = 2/(1 + w + sqrt(1 - 6*w + w^2)) = o.g.f. of A001003 (little Schroeder numbers).
T(2*n,n) = A333090(n). - Peter Luschny, Aug 06 2020
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
1, 1;
1, 3, 1;
1, 5, 9, 1;
1, 7, 21, 31, 1;
1, 9, 37, 89, 121, 1;
1, 11, 57, 183, 393, 515, 1;
1, 13, 81, 321, 897, 1805, 2321, 1;
1, 15, 109, 511, 1729, 4431, 8557, 10879, 1;
...
MAPLE
A336858row := proc(n) option remember; local T, k, row;
row := Array(0..n, fill=1);
if n = 0 then return row fi; T := procname(n-1);
for k from 1 to n-1 do row[k] := T[k] + T[k-1] + row[k-1] od; row end:
T := (n, k) -> A336858row(n)[k]:
seq(print(seq(T(n, k), k=0..n)), n=0..8); # Peter Luschny, Aug 06 2020
MATHEMATICA
T[_, 0] = 1; T[n_, n_] = 1;
T[n_, k_] := T[n, k] = T[n, k-1] + T[n-1, k] + T[n-1, k-1];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 29 2023 *)
KEYWORD
nonn,tabl
AUTHOR
Petros Hadjicostas, Aug 05 2020
STATUS
approved