login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = T(n,k-1) + T(n-1, k) + T(n-1,k-1) with T(n,0) = T(n, n) = 1 (n >= 0, 0 <= k <= n).
1

%I #25 Nov 29 2023 08:49:25

%S 1,1,1,1,3,1,1,5,9,1,1,7,21,31,1,1,9,37,89,121,1,1,11,57,183,393,515,

%T 1,1,13,81,321,897,1805,2321,1,1,15,109,511,1729,4431,8557,10879,1,1,

%U 17,141,761,3001,9161,22149,41585,52465,1,1,19,177,1079,4841,17003,48313,112047,206097,258563,1

%N Triangle read by rows: T(n,k) = T(n,k-1) + T(n-1, k) + T(n-1,k-1) with T(n,0) = T(n, n) = 1 (n >= 0, 0 <= k <= n).

%C This is _J. M. Bergot_'s triangular array described in A104858 with the top vertex of the triangle shifted from (1,1) to (0,0).

%F T(n,k) = T(n, k-1) + T(n-1, k) + T(n-1, k-1) for 1 <= k <= n-1 with T(n,0) = 1 = T(n,n) for n >= 0.

%F T(n,k) = D(n,k) - Sum_{m=1..k} b(m-1)*D(n-m, k-m) - Sum_{m=0..k-1} D(n-m, k-m-1), where D(n,k) = A008288(n,k) (square array of Delannoy numbers) and b(n) = A086616(n).

%F T(n,1) = A005408(n-1) = 2*n - 1 for n >= 1.

%F T(n,2) = A059993(n-2) = 2*n^2 - 2*n - 3 for n >= 2.

%F T(n,n-1) = A086616(n-1) for n >= 1.

%F T(n,n-2) = A035011(n-1) = A006318(n-1) - 1 for n >= 2.

%F Sum_{k=0..n} T(n,k) = A104858(n) for n >= 0.

%F Bivariate o.g.f.: (1 - y - x*y*(1 + g(x*y)))/((1 - x*y)*(1 - x - y - x*y)), where g(w) = 2/(1 - w + sqrt(1 - 6*w + w^2)) = o.g.f. of A006318 (large Schroeder numbers).

%F Bivariate o.g.f.: (1 - y - 2*x*y*q(x*y))/((1 - x*y)*(1 - x - y - x*y)), where q(w) = 2/(1 + w + sqrt(1 - 6*w + w^2)) = o.g.f. of A001003 (little Schroeder numbers).

%F T(2*n,n) = A333090(n). - _Peter Luschny_, Aug 06 2020

%e Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:

%e 1;

%e 1, 1;

%e 1, 3, 1;

%e 1, 5, 9, 1;

%e 1, 7, 21, 31, 1;

%e 1, 9, 37, 89, 121, 1;

%e 1, 11, 57, 183, 393, 515, 1;

%e 1, 13, 81, 321, 897, 1805, 2321, 1;

%e 1, 15, 109, 511, 1729, 4431, 8557, 10879, 1;

%e ...

%p A336858row := proc(n) option remember; local T, k, row;

%p row := Array(0..n, fill=1);

%p if n = 0 then return row fi; T := procname(n-1);

%p for k from 1 to n-1 do row[k] := T[k] + T[k-1] + row[k-1] od; row end:

%p T := (n, k) -> A336858row(n)[k]:

%p seq(print(seq(T(n, k), k=0..n)), n=0..8); # _Peter Luschny_, Aug 06 2020

%t T[_, 0] = 1; T[n_, n_] = 1;

%t T[n_, k_] := T[n, k] = T[n, k-1] + T[n-1, k] + T[n-1, k-1];

%t Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Nov 29 2023 *)

%Y Cf. A001003, A005408, A006318, A008288, A035011, A059993, A086616, A104858, A333090.

%K nonn,tabl

%O 0,5

%A _Petros Hadjicostas_, Aug 05 2020