login
A336839
Denominator of the arithmetic mean of the divisors of A003961(n).
8
1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
Also denominator of A336841(n) / A000005(n).
All terms are odd because A336932(n) = A007814(A003973(n)) >= A295664(n) for all n.
FORMULA
a(n) = denominator(A003973(n)/A000005(n)).
a(n) = d(n)/A336856(n) = d(n)/gcd(d(n),A003973(n)) = d(n)/gcd(d(n),A336841(n)), where d(n) is the number of divisors of n, A000005(n).
a(n) = A057021(A003961(n)).
For all primes p, and e >= 0, a(A000225(e)) = a(p^((2^e) - 1)) = 1. [See A336856]
It seems that for all odd primes p, and with the exponents e=5, 11, 17 or 23 (at least these), a(p^e) = 1.
It seems that a(27^((2^n)-1)) = A052940(n-1) for all n >= 1.
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A336839(n) = denominator(sigma(A003961(n))/numdiv(n));
CROSSREFS
Cf. A336918 (positions of 1's), A336919 (of terms > 1).
Cf. A336837 and A336838 (numerators).
Sequence in context: A061893 A078530 A362302 * A291568 A350559 A365401
KEYWORD
nonn,frac
AUTHOR
Antti Karttunen, Aug 07 2020
STATUS
approved