login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365401
The number of divisors of the largest unitary divisor of n that is a square.
4
1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 5, 3, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 5, 5, 1, 1, 3, 1, 1, 1
OFFSET
1,4
COMMENTS
First differs from A212181 at n = 32.
The sum of these divisors is A351568(n).
All the terms are odd.
FORMULA
a(n) = A000005(A350388(n)).
a(n) = A000005(n) / A365402(n).
a(n) <= A000005(n) with equality if and only if n is a square (A000290).
a(n) >= 1 with equality if and only if n is an exponentially odd number (A268335).
Multiplicative with a(p^e) = 1 if e is odd, and e+1 if e is even.
Dirichlet g.f.: zeta(2*s)^2 * Product_{p prime} (1 + 1/p^s + 1/p^(2*s) - 1/p^(3*s)).
From Vaclav Kotesovec, Sep 05 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s)^2 * Product_{p prime} (1 - 2/p^(3*s) + 1/p^(4*s)).
Let f(s) = Product_{p prime} (1 - 2/p^(3*s) + 1/p^(4*s)).
Sum_{k=1..n} a(k) ~ f(1) * Pi^4 * n / 36 + sqrt(n) * zeta(1/2) * f(1/2)/2 * (log(n) + 4*gamma - 2 + zeta'(1/2)/zeta(1/2) + f'(1/2)/f(1/2)), where
f(1) = Product_{p prime} (1 - 2/p^3 + 1/p^4) = 0.7446954979060674204391238715944543281179691329049241118630718137015097502...,
f(1/2) = Product_{p prime} (1 - 2/p^(3/2) + 1/p^2) = 0.2312522106782016049013780988087017618011735848676872392115785564006277675...,
f'(1/2) = f(1/2) * Sum_{p prime} 2*(3*sqrt(p) - 2) * log(p) / (1 - 2*sqrt(p) + p^2) = f(1/2) * 6.937179176924511608542644054340717439502789953858512457656... and gamma is the Euler-Mascheroni constant A001620. (End)
MATHEMATICA
f[p_, e_] := If[OddQ[e], 1, e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = vecprod(apply(x -> if(x%2, 1, x+1), factor(n)[, 2]));
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Sep 03 2023
STATUS
approved