login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336561
Numbers k at which point A336459(k) appears multiplicative, but A051027(k) does not.
5
506, 1819, 2024, 2714, 3674, 3818, 4554, 5088, 5750, 5786, 6026, 6762, 6842, 7215, 7276, 9487, 9523, 10442, 11895, 12397, 12650, 13178, 13303, 14235, 14696, 15272, 15962, 16346, 16371, 18216, 18458, 19274, 19514, 19690, 19706, 20179, 20378, 21079, 21255, 21626, 22066, 22586, 22682, 23000, 23144, 23322, 24104, 24246
OFFSET
1,1
EXAMPLE
506 = 2*11*23 is a term as A336459(2)*A336459(11)*A336459(23) = 1*7*5 = 35 = A336459(506), while A051027(2)*A051027(11)*A051027(23) = 4*28*60 = 6720 <> A051027(506) = 2520. Note that 2520 = 2^3 * 3^2 * 5 * 7, thus A065330(2520) = 5*7 = 35.
PROG
(PARI)
is_fun_mult_on_n(fun, n) = { my(f=factor(n)); prod(k=1, #f~, fun(f[k, 1]^f[k, 2]))==fun(n); };
A051027(n) = sigma(sigma(n));
A336546(n) = is_fun_mult_on_n(A051027, n);
A065330(n) = (n>>valuation(n, 2)/3^valuation(n, 3));
isA336561(n) = (A336546(n)<is_fun_mult_on_n(A336459, n));
CROSSREFS
Cf. also A336549.
Subsequence of A336548, and probably also of A336560.
Sequence in context: A003925 A126846 A332150 * A158633 A204954 A204947
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 25 2020
STATUS
approved