login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k at which point A336459(k) appears multiplicative, but A051027(k) does not.
5

%I #8 Jul 26 2020 09:51:21

%S 506,1819,2024,2714,3674,3818,4554,5088,5750,5786,6026,6762,6842,7215,

%T 7276,9487,9523,10442,11895,12397,12650,13178,13303,14235,14696,15272,

%U 15962,16346,16371,18216,18458,19274,19514,19690,19706,20179,20378,21079,21255,21626,22066,22586,22682,23000,23144,23322,24104,24246

%N Numbers k at which point A336459(k) appears multiplicative, but A051027(k) does not.

%H Antti Karttunen, <a href="/A336561/b336561.txt">Table of n, a(n) for n = 1..11481</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%e 506 = 2*11*23 is a term as A336459(2)*A336459(11)*A336459(23) = 1*7*5 = 35 = A336459(506), while A051027(2)*A051027(11)*A051027(23) = 4*28*60 = 6720 <> A051027(506) = 2520. Note that 2520 = 2^3 * 3^2 * 5 * 7, thus A065330(2520) = 5*7 = 35.

%o (PARI)

%o is_fun_mult_on_n(fun,n) = { my(f=factor(n)); prod(k=1,#f~,fun(f[k,1]^f[k,2]))==fun(n); };

%o A051027(n) = sigma(sigma(n));

%o A336546(n) = is_fun_mult_on_n(A051027,n);

%o A065330(n) = (n>>valuation(n, 2)/3^valuation(n, 3));

%o A336459(n) = A065330(A051027(n));

%o isA336561(n) = (A336546(n)<is_fun_mult_on_n(A336459,n));

%Y Cf. A051027, A065330, A336459.

%Y Cf. also A336549.

%Y Subsequence of A336548, and probably also of A336560.

%K nonn

%O 1,1

%A _Antti Karttunen_, Jul 25 2020