login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126846
Ramanujan numbers (A000594) read mod 23^2.
0
1, 505, 252, 115, 69, 300, 184, 369, 92, 460, 322, 414, 459, 345, 460, 22, 161, 437, 483, 0, 345, 207, 254, 413, 162, 93, 116, 0, 344, 69, 229, 230, 207, 368, 0, 0, 207, 46, 346, 69, 160, 184, 138, 0, 0, 252, 459, 254, 139, 344, 368, 414, 253, 390, 0, 184, 46, 208, 71, 0
OFFSET
1,2
LINKS
Jean-Pierre Serre, Une interprétation des congruences relatives à la fonction tau de Ramanujan, Séminaire Delange-Pisot-Poitou, Théorie des nombres, Vol. 9, No. 1 (1967-1968), Talk no. 14, 17 p., section 4.5, page 14-11.
H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973.
FORMULA
a(p) == sigma_11(p) (mod 23^2) for prime p of the form u^2 + 23*v^2, u >= 1 (Serre, 1968). - Amiram Eldar, Jan 05 2025
MATHEMATICA
a[n_] := Mod[RamanujanTau[n], 529]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
PROG
(PARI) a(n) = ramanujantau(n) % 529; \\ Amiram Eldar, Jan 05 2025
CROSSREFS
Sequence in context: A003798 A003791 A003925 * A332150 A336561 A158633
KEYWORD
nonn,changed
AUTHOR
N. J. A. Sloane, Feb 25 2007
STATUS
approved