login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Ramanujan numbers (A000594) read mod 23^2.
2

%I #9 Jan 05 2025 01:11:05

%S 1,505,252,115,69,300,184,369,92,460,322,414,459,345,460,22,161,437,

%T 483,0,345,207,254,413,162,93,116,0,344,69,229,230,207,368,0,0,207,46,

%U 346,69,160,184,138,0,0,252,459,254,139,344,368,414,253,390,0,184,46,208,71,0

%N Ramanujan numbers (A000594) read mod 23^2.

%H Amiram Eldar, <a href="/A126846/b126846.txt">Table of n, a(n) for n = 1..10000</a>

%H Jean-Pierre Serre, <a href="http://www.numdam.org/item/?id=SDPP_1967-1968__9_1_A13_0">Une interprétation des congruences relatives à la fonction tau de Ramanujan</a>, Séminaire Delange-Pisot-Poitou, Théorie des nombres, Vol. 9, No. 1 (1967-1968), Talk no. 14, 17 p., section 4.5, page 14-11.

%H H. P. F. Swinnerton-Dyer, <a href="http://dx.doi.org/10.1007/978-3-540-37802-0_1">On l-adic representations and congruences for coefficients of modular forms</a>, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973.

%F a(p) == sigma_11(p) (mod 23^2) for prime p of the form u^2 + 23*v^2, u >= 1 (Serre, 1968). - _Amiram Eldar_, Jan 05 2025

%t a[n_] := Mod[RamanujanTau[n], 529]; Array[a, 100] (* _Amiram Eldar_, Jan 05 2025 *)

%o (PARI) a(n) = ramanujantau(n) % 529; \\ _Amiram Eldar_, Jan 05 2025

%Y Cf. A000594, A013959.

%K nonn,changed

%O 1,2

%A _N. J. A. Sloane_, Feb 25 2007