login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A126845
Ramanujan numbers (A000594) read mod 23.
2
1, 22, 22, 0, 0, 1, 0, 1, 0, 0, 0, 0, 22, 0, 0, 22, 0, 0, 0, 0, 0, 0, 1, 22, 1, 1, 1, 0, 22, 0, 22, 0, 0, 0, 0, 0, 0, 0, 1, 0, 22, 0, 0, 0, 0, 22, 22, 1, 1, 22, 0, 0, 0, 22, 0, 0, 0, 1, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 22, 0, 22, 0, 22, 0, 22, 0, 0, 22, 0, 0, 22, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0
OFFSET
1,2
REFERENCES
G. H. Hardy, Ramanujan, Twelve Lectures on Subjects Suggested by His Life and Work, Cambridge, 1940, p. 166.
LINKS
H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973.
FORMULA
a(n) = 0 if Legendre symbol (n,23) = A011586(n) = -1 (Hardy, 1940). - Amiram Eldar, Jan 04 2025
MATHEMATICA
a[n_] := Mod[RamanujanTau[n], 23]; Array[a, 100] (* Amiram Eldar, Jan 04 2025 *)
PROG
(PARI) a(n) = ramanujantau(n) % 23; \\ Amiram Eldar, Jan 04 2025
CROSSREFS
Sequence in context: A291491 A022978 A023464 * A350086 A361686 A010861
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 25 2007
STATUS
approved