login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158633
a(n) = 529*n^2 - 23.
2
506, 2093, 4738, 8441, 13202, 19021, 25898, 33833, 42826, 52877, 63986, 76153, 89378, 103661, 119002, 135401, 152858, 171373, 190946, 211577, 233266, 256013, 279818, 304681, 330602, 357581, 385618, 414713, 444866, 476077, 508346, 541673, 576058, 611501, 648002
OFFSET
1,1
COMMENTS
The identity (46*n^2-1)^2-(529*n^2-23)*(2*n)^2 = 1 can be written as A158634(n)^2-a(n)*A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
G.f.: 23*x*(-22-25*x+x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 16 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(23))*Pi/sqrt(23))/46.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(23))*Pi/sqrt(23) - 1)/46. (End)
MAPLE
A158633:=n->529*n^2 - 23: seq(A158633(n), n=1..50); # Wesley Ivan Hurt, Jan 28 2017
MATHEMATICA
a[n_] := 529*n^2 - 23; Array[a, 50] (* Amiram Eldar, Mar 16 2023 *)
PROG
(PARI) for(n=1, 40, print1(529*n^2 - 23", ")); \\ Vincenzo Librandi, Feb 17 2012
CROSSREFS
Sequence in context: A126846 A332150 A336561 * A204954 A204947 A295992
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 23 2009
EXTENSIONS
Comment rephrased and redundant formula replaced by R. J. Mathar, Oct 19 2009
STATUS
approved