login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336235
Numbers m such that Sum_{i=3..m} (prime(i) modulo 6) = 3*m, where prime(i) is the i-th prime.
0
17, 33, 35, 41, 43, 45, 55, 59, 61, 63, 65, 67, 69, 71, 73, 77, 79, 81, 83, 87, 89, 91, 93, 95, 101, 115, 117, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 181, 183, 189, 191, 193, 275, 277, 281, 283, 291, 341, 355, 521, 523, 525, 527
OFFSET
1,1
COMMENTS
By the Prime Number Theorem for arithmetic progressions, all nonzero residue classes are equiprobable. In particular, asymptotically, as m -> oo the Sum_{i=r..m} (prime(i) modulo k) = m*k/2. For this sequence this says Sum_{i=3..m} (prime(i) modulo 6) = m*3.
LINKS
A. Granville and G. Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
EXAMPLE
For m = 17 we have Sum_{i=3..17} (prime(i) modulo 6) = 5 + 1 + 5 + 1 + 5 + 1 + 5 + 5 + 1 + 1 + 5 + 1 + 5 + 5 + 5 = 3*17.
MATHEMATICA
s = Accumulate[Mod[Select[Range[5, 200000], PrimeQ], 6]]; 2 + Position[s - 3 * Range[Length[s]], 6] // Flatten (* Amiram Eldar, Jul 13 2020 *)
PROG
(PARI) isok(m) = sum(i=3, m, prime(i)%6) == 3*m; \\ Michel Marcus, Jul 13 2020
CROSSREFS
Sequence in context: A162624 A029817 A162504 * A085255 A283395 A244752
KEYWORD
nonn
AUTHOR
Ctibor O. Zizka, Jul 13 2020
EXTENSIONS
More terms from Michel Marcus, Jul 13 2020
STATUS
approved