login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A029817
Average theta series of odd unimodular lattices of dimension 16 (multiplied by 17).
0
17, 32, 4064, 70016, 528352, 2500032, 8892032, 26353408, 67637216, 153125024, 317504064, 623589504, 1156034176, 2007952576, 3346882816, 5470070016, 8657571808, 13130837568, 19446878048, 28603895680, 41278028352, 57661256704, 79195867008, 108954414336, 147990228608
OFFSET
0,1
LINKS
Heng Huat Chan and Christian Krattenthaler, Recent progress in the study of representations of integers as sums of squares, Bulletin of the London Mathematical Society, Vol. 37, No. 6 (2005), pp. 818-826; arXiv preprint, arXiv:math/0407061 [math.NT], 2004.
FORMULA
G.f.: 17 + 32 * Sum_{k >= 1} k^7*q^k/(1-(-q)^k).
a(n) = 32 * (-1)^n * (A013955(n) - 2 * A321811(2*n)) for n >= 1. - Amiram Eldar, Jan 07 2025
MATHEMATICA
max = 20; s = 17 + 32*Sum[k^7*q^k/(1-(-q)^k), {k, 1, max}] + O[q]^max; CoefficientList[s, q] (* Jean-François Alcover, Dec 07 2015 *)
PROG
(PARI) a(n)=if(n<1, 17*(n==0), 32*sumdiv(n, d, d^7-2*if(d%4==2, (d/2)^7))) /* Michael Somos, Jul 16 2004 */
CROSSREFS
Sequence in context: A043907 A173054 A162624 * A162504 A336235 A085255
KEYWORD
nonn
STATUS
approved