OFFSET
1,3
COMMENTS
If m is a term then 2*m is a term too.
If m is an odd term and p is prime then 2^(p+1)*m+1 is a term. - Robert Israel, Jul 15 2020
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Daniel Glasscock, Joel Moreira, and Florian K. Richter, Additive transversality of fractal sets in the reals and the integers, arXiv:2007.05480 [math.NT], 2020. See Aprime p. 34.
Benjamin Matson and Elizabeth Sattler, S-limited shifts, arXiv:1708.08511 [math.DS], 2017. See page 2.
EXAMPLE
9 is 1001 in binary, with 2 (a prime) consecutive zeroes, so 9 is a term.
MAPLE
B[1]:= {1}: S[0]:= {0}: S[1]:= {1}: count:= 2:
for d from 2 while count < 200 do
B[d]:= map(op, {seq(map(t -> t*2^(p+1)+1, B[d-p-1]), p=select(isprime, [$2..d-2]))});
S[d]:= B[d] union map(`*`, S[d-1], 2);
count:= count+nops(S[d]);
od:
[seq(op(sort(convert(S[t], list))), t=0..d-1)]; # Robert Israel, Jul 16 2020
PROG
(PARI) isok(n) = {my(vpos = select(x->(x==1), binary(n), 1)); for (i=1, #vpos-1, if (!isprime(vpos[i+1]-vpos[i]-1), return (0)); ); return(1); }
CROSSREFS
KEYWORD
AUTHOR
Michel Marcus, Jul 13 2020
STATUS
approved