OFFSET
2,1
COMMENTS
We can say that "w is a Wieferich pseudoprime to base n".
Any prime factor of w is a Wieferich prime to base n.
LINKS
Robert Price, Table of n, a(n) for n = 2..1276
EXAMPLE
Table starts
w=4: 17, 33, 49, 65, 81, 97, 113, ....
w=6: 37, 73, 109, 145, 181, 217, ....
w=8: 65, 129, 193, 257, 321, 385, ....
w=9: 80, 82, 161, 163, 242, 244, ....
w=10: 101, 201, 301, 401, 501, 601, ....
w=12: 145, 289, 433, 577, 721, 865, ....
w=14: 197, 393, 589, 785, 981, ....
....
MATHEMATICA
T = {};
For[w = 4, w <= 100, w++,
If[PrimeQ[w], Continue[]];
t = {};
For [n = 2, n <= 10^5, n++,
If[Mod[n^(w - 1), w^2] == 1, AppendTo[t, n]]];
AppendTo[T, t]];
Print[TableForm[T]];
A244752 = {};
For[c = 1, c <= 50, c++,
For[r = 1, r <= c, r++, AppendTo[A244752, T[[r]][[c - r + 1]]]]];
A244752 (* Robert Price, Sep 07 2019 *)
PROG
(PARI) forcomposite(w=2, 20, print1("w=", w, ": "); for(n=2, 10^3, if(Mod(n, w^2)^(w-1)==1, print1(n, ", "))); print(""))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Felix Fröhlich, Jul 05 2014
EXTENSIONS
a(17)-a(55) from Robert Price, Sep 07 2019
STATUS
approved