|
|
A336194
|
|
Table read by antidiagonals upwards: T(n,k) = (n - 1)*k^3 - 1, with n > 1 and k > 0.
|
|
0
|
|
|
0, 1, 7, 2, 15, 26, 3, 23, 53, 63, 4, 31, 80, 127, 124, 5, 39, 107, 191, 249, 215, 6, 47, 134, 255, 374, 431, 342, 7, 55, 161, 319, 499, 647, 685, 511, 8, 63, 188, 383, 624, 863, 1028, 1023, 728, 9, 71, 215, 447, 749, 1079, 1371, 1535, 1457, 999, 10, 79, 242, 511, 874, 1295, 1714, 2047, 2186, 1999, 1330
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,3
|
|
COMMENTS
|
T(n, k) is a sharp upper bound of the tree width of a graph G that does not contain a clique on n vertices nor a minimal separator of size larger than k (see Theorem 2.1 in Pilipczuk et al.).
All the square matrices starting at top left of the table T are singular except for the 2 X 2 submatrix: det([0, 7; 1, 15]) = -7.
|
|
LINKS
|
|
|
FORMULA
|
O.g.f.: x^2*y*(y*(7 - 2*y + y^2) + x*(1 - y)^3)/((1 - x)^2*(1 - y)^4).
E.g.f.: -1 + exp(x) - x + exp(y)*x + exp(y)*(1 + y + 3*y^2 + y^3) + exp(x + y)*(-1 +(-1 + x)*y*(1 + 3*y + y^2)).
T(n, n) = A085537(n) - 1 for n > 1.
T(n, k) = T(n+1, 1)*T(2, k) + T(n, 1).
|
|
EXAMPLE
|
The table starts at row n = 2 and column k = 1 as:
0 7 26 63 124 215 ...
1 15 53 127 249 431 ...
2 23 80 191 374 647 ...
3 31 107 255 499 863 ...
4 39 134 319 624 1079 ...
5 47 161 383 749 1295 ...
...
|
|
MATHEMATICA
|
T[n_, k_]:=(n-1)*k^3-1; Flatten[Table[T[n+1-k, k], {n, 2, 12}, {k, 1, n-1}]]
|
|
PROG
|
(PARI) T(n, k) = (n - 1)*k^3 - 1
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|