login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


A336196
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k)^4 * a(k).
6
1, 1, 17, 1459, 395793, 262131251, 359993423843, 915919888063853, 3975467425523532305, 27639424688447366285203, 292886774320942590679779267, 4544030770812055230064359134573, 99847457331663057820508375752459491, 3021907600842518917755426740899056448141
OFFSET
0,3
LINKS
FORMULA
a(n) = (n!)^4 * [x^n] 1 / (1 - Sum_{k>=1} x^k / (k!)^4).
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^4 a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 13}]
nmax = 13; CoefficientList[Series[1/(1 - Sum[x^k/(k!)^4, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!^4
CROSSREFS
Column k=4 of A326322.
Sequence in context: A078814 A242282 A129911 * A336260 A104808 A061686
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 11 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 10:44 EDT 2024. Contains 376068 sequences. (Running on oeis4.)