OFFSET
0,4
COMMENTS
Also the multiplicity of q(1) in the factorization of n! into factors q(i) = prime(i)/i. For example, the factorization of 7! is q(1)^9 * q(2)^3 * q(3) * q(4), so a(7) = 9.
FORMULA
For n > 1, a(n) = - 1 + Sum_{k = 1..n} A109129(k).
EXAMPLE
Matula-Goebel trees of the first 9 factorial numbers are:
0!: o
1!: o
2!: (o)
3!: (o(o))
4!: (ooo(o))
5!: (ooo(o)((o)))
6!: (oooo(o)(o)((o)))
7!: (oooo(o)(o)((o))(oo))
8!: (ooooooo(o)(o)((o))(oo))
The number of leaves is the number of o's, which are (1, 1, 1, 2, 4, 5, 7, 9, 12, ...), as required.
MATHEMATICA
mglv[n_]:=If[n==1, 1, Total[Cases[FactorInteger[n], {p_, k_}:>mglv[PrimePi[p]]*k]]];
Table[mglv[n!], {n, 0, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 09 2019
STATUS
approved