login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A334793 a(n) = Sum_{d|n} lcm(tau(d), pod(d)) where tau(k) is the number of divisors of k (A000005) and pod(k) is the product of divisors of k (A007955). 2
1, 3, 7, 27, 11, 45, 15, 91, 34, 113, 23, 1797, 27, 213, 917, 5211, 35, 5904, 39, 24137, 1785, 509, 47, 333637, 386, 705, 2950, 66093, 59, 811055, 63, 103515, 4385, 1193, 4925, 10085352, 75, 1485, 6117, 2584201, 83, 3113715, 87, 256085, 183194, 2165, 95 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..47.

FORMULA

a(p) = 2p + 1 for p = odd primes (A065091).

EXAMPLE

a(6) = lcm(tau(1), pod(1)) + lcm(tau(2), pod(2)) + lcm(tau(3), pod(3)) + lcm(tau(6), pod(6)) = lcm(1, 1) + lcm(2, 2) + lcm(2, 3) + lcm(4, 36) = 1 + 2 + 6 + 36 = 45.

MATHEMATICA

a[n_] := DivisorSum[n, LCM[(d = DivisorSigma[0, #]), #^(d/2)] &]; Array[a, 100] (* Amiram Eldar, May 12 2020 *)

PROG

(MAGMA) [&+[LCM(#Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]]

(PARI) a(n) = sumdiv(n, d, lcm(numdiv(d), vecprod(divisors(d)))); \\ Michel Marcus, May 12 2020

CROSSREFS

Cf. A334662 (Sum_{d|n} gcd(tau(d), pod(d))), A334784 (Sum_{d|n} lcm(tau(d), sigma(d))).

Cf. A000005 (tau(n)), A007955 (pod(n)), A324528 (lcm(tau(n), pod(n))).

Sequence in context: A126472 A019059 A305446 * A175198 A272530 A225038

Adjacent sequences:  A334790 A334791 A334792 * A334794 A334795 A334796

KEYWORD

nonn

AUTHOR

Jaroslav Krizek, May 12 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 22 07:26 EDT 2021. Contains 343163 sequences. (Running on oeis4.)