The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175198 a(n) is the smallest integer k such that the polynomial x^k + 1 over the integers mod 2 has exactly n distinct irreducible factors. 1
1, 3, 7, 27, 15, 21, 31, 45, 73, 91, 129, 85, 63, 93, 105, 275, 257, 219, 127, 189, 217, 453, 441, 357, 601, 741, 273, 837, 1191, 981, 513, 645, 903, 949, 255, 315, 1649, 341, 1103, 1235, 455, 651, 657, 1443, 775, 2795, 825, 1925, 1911, 771 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Example: the polynomial x^1649 + 1 over GF(2) is the product of 37 irreducible factors.
Records: 1, 3, 7, 27, 31, 45, 73, 91, 129, 275, 453, 601, 741, 837, 1191, 1649, 2795, 3045, 3913, 3955, 10719, 18875, 48631, 73143, 76373, 126191, 189061, 210105, 216481, 249891, 303021, 896041, 961185, 1063997, 1759603, 2555521, 3492783, 3923381, 5276409, 5529727, 6663515, 7234645, 8761553, 10488401, 11636993, 12290949, 20936365, 25099273, 25821285, 28081875, 28623469, 32848947, 48539883, 58885551, ..., . - Robert G. Wilson v, Feb 07 2018
REFERENCES
R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, 1983, p. 65.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (first 300 terms from Charles R Greathouse IV)
Eric Weisstein's World on Math, Irreducible Polynomial
FORMULA
A000005(a(n)) <= n <= a(n). - Robert Israel, Feb 07 2018
EXAMPLE
For n=1, x+1 is irreducible hence a(1) = 1.
For n=2, x^3 + 1 = (x+1)(x^2+x+1) mod 2 hence a(2) = 3.
For n=3, x^7 + 1 = (x+1)(x^3 + x^2 + 1)(x^3 + x + 1) mod 2 hence a(3) = 7.
For n=4, x^27 + 1 = (x+1)(x^2 + x + 1)(x^18 + x^9 + 1)(x^6 + x^3 + 1) mod 2 hence a(4) = 27.
For n=5, x^15 + 1 = (x+1)(x^4 + x^3 + x^2 + x + 1)(x^2 + x + 1)(x^4 + x^3 + 1)(x^4 + x + 1) mod 2 hence a(5) = 15.
MAPLE
with(numtheory):T:=array(0..50000000):U=array(0..50000000 ):nn:=3000: for k from 1 to nn do:liste:=Factors(x^k+ 1) mod 2; t1 := liste[2]:t2:=(liste[2][i], i=1..nops(t1)):a :=nops(t1):T[k]:=a:U[k]:=k:od:mini:=T[1]:ii:=1: print(mini):for p from 1 to nn-1 do:for n from 1 to nn-1 do:if T[n] < mini then mini:= T[n]:ii:=n: indice:=U[n]: else fi:od:print(indice):print(mini):T[ii]:= 99999999: ii:=1:mini:=T[1] :od:
MATHEMATICA
With[{s = Array[Length@ FactorList[#, Modulus -> 2] &[x^# + 1] &, 500]}, Array[FirstPosition[s, #][[1]] &, 1 + LengthWhile[Differences@ #, # == 1 &], 2] &@ Union@ s] (* Michael De Vlieger, Feb 05 2018 *)
CountFactors[p_, n_] := CountFactors[p, n] = Module[{sum = 0, m = n, d, f, i}, While[ Mod[m, p] == 0, m /= p]; d = Divisors[m]; Do[f = d[[i]]; sum += EulerPhi[f]/MultiplicativeOrder[p, f], {i, Length[d]}]; sum](*after Shel Kaphan from A000374*); f[n_] := Block[{k = 1}, While[CountFactors[2, k] != n, k++]; k]; Array[f, 60] (* Robert G. Wilson v, Feb 07 2018 *)
PROG
(PARI) first(n)=my(v=vector(n), left=n, k, t); while(left, t=#factor(Mod('x^k+++1, 2))~; if(t<=n && v[t]==0, v[t]=k; left--)); v \\ Charles R Greathouse IV, Jan 28 2018
CROSSREFS
Sequence in context: A019059 A305446 A334793 * A272530 A225038 A293564
KEYWORD
nonn
AUTHOR
Michel Lagneau, Mar 02 2010
EXTENSIONS
Name corrected by Charles R Greathouse IV, Jan 28 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 12:19 EDT 2024. Contains 373400 sequences. (Running on oeis4.)