OFFSET
1,2
COMMENTS
From Robert Israel, Jun 25 2020: (Start)
If p is an odd prime, a(p) = 2*p.
If p is a prime > 3, a(p^2) = 6*p^3.
If p and q are distinct odd primes, a(p*q) = 16*p^2*q^2. (End)
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
a(p) = 2p for p = odd primes (A065091).
EXAMPLE
a(6) = lcm(1, tau(1)) * lcm(2, tau(2)) * lcm(3, tau(3)) * lcm(6, tau(6)) = lcm(1, 1) * lcm(2, 2) * lcm(3, 2) * lcm(6, 4) = 1 * 2 * 6 * 12 = 144.
MAPLE
g:= d -> ilcm(d, numtheory:-tau(d)):
f:= n -> mul(g(d), d = numtheory:-divisors(n)):
map(f, [$1..100]); # Robert Israel, Jun 25 2020
MATHEMATICA
a[n_] := Product[LCM[d, DivisorSigma[0, d]], {d, Divisors[n]}]; Array[a, 100] (* Amiram Eldar, May 12 2020 *)
PROG
(Magma) [&*[LCM(d, #Divisors(d)): d in Divisors(n)]: n in [1..100]]
(PARI) a(n) = my(d=divisors(n)); prod(k=1, #d, lcm(d[k], numdiv(d[k]))); \\ Michel Marcus, May 12 2020
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Jaroslav Krizek, May 12 2020
STATUS
approved