login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334795
a(n) = Product_{d|n} lcm(d, tau(d)) where tau(k) is the number of divisors of k (A000005).
1
1, 2, 6, 24, 10, 144, 14, 192, 54, 400, 22, 20736, 26, 784, 3600, 15360, 34, 23328, 38, 288000, 7056, 1936, 46, 3981312, 750, 2704, 5832, 790272, 58, 207360000, 62, 1474560, 17424, 4624, 19600, 120932352, 74, 5776, 24336, 92160000, 82, 796594176, 86, 3066624
OFFSET
1,2
COMMENTS
From Robert Israel, Jun 25 2020: (Start)
If p is an odd prime, a(p) = 2*p.
If p is a prime > 3, a(p^2) = 6*p^3.
If p and q are distinct odd primes, a(p*q) = 16*p^2*q^2. (End)
LINKS
FORMULA
a(p) = 2p for p = odd primes (A065091).
EXAMPLE
a(6) = lcm(1, tau(1)) * lcm(2, tau(2)) * lcm(3, tau(3)) * lcm(6, tau(6)) = lcm(1, 1) * lcm(2, 2) * lcm(3, 2) * lcm(6, 4) = 1 * 2 * 6 * 12 = 144.
MAPLE
g:= d -> ilcm(d, numtheory:-tau(d)):
f:= n -> mul(g(d), d = numtheory:-divisors(n)):
map(f, [$1..100]); # Robert Israel, Jun 25 2020
MATHEMATICA
a[n_] := Product[LCM[d, DivisorSigma[0, d]], {d, Divisors[n]}]; Array[a, 100] (* Amiram Eldar, May 12 2020 *)
PROG
(Magma) [&*[LCM(d, #Divisors(d)): d in Divisors(n)]: n in [1..100]]
(PARI) a(n) = my(d=divisors(n)); prod(k=1, #d, lcm(d[k], numdiv(d[k]))); \\ Michel Marcus, May 12 2020
CROSSREFS
Cf. A334782 (Sum_{d|n} lcm(d, tau(d))), A334664 (Product_{d|n} gcd(d, tau(d))).
Cf. A000005 (tau(n)), A009230 (lcm(n, tau(n))).
Sequence in context: A204934 A033642 A324528 * A370252 A181952 A345902
KEYWORD
nonn,look
AUTHOR
Jaroslav Krizek, May 12 2020
STATUS
approved