login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A334795 a(n) = Product_{d|n} lcm(d, tau(d)) where tau(k) is the number of divisors of k (A000005). 1
1, 2, 6, 24, 10, 144, 14, 192, 54, 400, 22, 20736, 26, 784, 3600, 15360, 34, 23328, 38, 288000, 7056, 1936, 46, 3981312, 750, 2704, 5832, 790272, 58, 207360000, 62, 1474560, 17424, 4624, 19600, 120932352, 74, 5776, 24336, 92160000, 82, 796594176, 86, 3066624 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

From Robert Israel, Jun 25 2020: (Start)

If p is an odd prime, a(p) = 2*p.

If p is a prime > 3, a(p^2) = 6*p^3.

If p and q are distinct odd primes, a(p*q) = 16*p^2*q^2. (End)

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

FORMULA

a(p) = 2p for p = odd primes (A065091).

EXAMPLE

a(6) = lcm(1, tau(1)) * lcm(2, tau(2)) * lcm(3, tau(3)) * lcm(6, tau(6)) = lcm(1, 1) * lcm(2, 2) * lcm(3, 2) * lcm(6, 4) = 1 * 2 * 6 * 12 = 144.

MAPLE

g:= d -> ilcm(d, numtheory:-tau(d)):

f:= n -> mul(g(d), d = numtheory:-divisors(n)):

map(f, [$1..100]); # Robert Israel, Jun 25 2020

MATHEMATICA

a[n_] := Product[LCM[d, DivisorSigma[0, d]], {d, Divisors[n]}]; Array[a, 100] (* Amiram Eldar, May 12 2020 *)

PROG

(Magma) [&*[LCM(d, #Divisors(d)): d in Divisors(n)]: n in [1..100]]

(PARI) a(n) = my(d=divisors(n)); prod(k=1, #d, lcm(d[k], numdiv(d[k]))); \\ Michel Marcus, May 12 2020

CROSSREFS

Cf. A334782 (Sum_{d|n} lcm(d, tau(d))), A334664 (Product_{d|n} gcd(d, tau(d))).

Cf. A000005 (tau(n)), A009230 (lcm(n, tau(n))).

Sequence in context: A204934 A033642 A324528 * A181952 A345902 A256270

Adjacent sequences: A334792 A334793 A334794 * A334796 A334797 A334798

KEYWORD

nonn,look

AUTHOR

Jaroslav Krizek, May 12 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 01:51 EST 2022. Contains 358672 sequences. (Running on oeis4.)