login
A334798
Numbers k such that the binary digits of k*(k-1) and k*(k+1) have the same numbers of 0's and the same number of 1's.
2
7, 15, 25, 31, 43, 48, 54, 63, 80, 84, 87, 110, 113, 127, 142, 144, 147, 162, 171, 172, 177, 183, 185, 197, 199, 203, 216, 217, 221, 226, 227, 232, 234, 238, 243, 255, 275, 281, 290, 301, 303, 308, 317, 322, 323, 329, 340, 343, 349, 355, 367, 370, 377, 389, 391, 402, 411, 418, 423, 426, 427, 432
OFFSET
1,1
COMMENTS
k such that A023416(k*(k-1)) = A023416(k*(k+1)) and A000120(k*(k-1))=A000120(k*(k+1)).
Either of A023416 and A000120 could be replaced by A070939 in this condition.
LINKS
EXAMPLE
a(3)=25 is in the sequence because 25*24=600=1001011000_2 and 25*26=650=1010001010_2 both have 6 binary digits 0 and 4 binary digits 1.
MAPLE
filter:= proc(n) local A, B;
A:= convert(n*(n-1), base, 2);
B:= convert(n*(n+1), base, 2);
nops(A)=nops(B) and convert(A, `+`)=convert(B, `+`)
end proc:
select(filter, [$1..1000]);
MATHEMATICA
sn01Q[k_]:=DigitCount[k(k-1), 2, 0]==DigitCount[k(k+1), 2, 0]&&DigitCount[k(k-1), 2, 1] == DigitCount[ k(k+1), 2, 1]; Select[Range[500], sn01Q] (* Harvey P. Dale, May 27 2023 *)
PROG
(PARI) isok(k) = vecsort(binary(k*(k+1))) == vecsort(binary(k*(k-1))); \\ Michel Marcus, May 12 2020
CROSSREFS
Includes terms >= 7 of A000225.
Sequence in context: A056119 A329383 A284758 * A211430 A082111 A323483
KEYWORD
nonn,base
AUTHOR
Robert Israel, May 11 2020
STATUS
approved