login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334481
Decimal expansion of Product_{k>=1} (1 + 1/A002476(k)^2).
4
1, 0, 3, 3, 5, 3, 7, 8, 8, 8, 4, 6, 1, 3, 5, 2, 8, 4, 3, 0, 8, 2, 8, 4, 6, 1, 8, 4, 9, 7, 6, 2, 1, 8, 3, 3, 9, 4, 7, 5, 1, 7, 6, 7, 7, 4, 8, 1, 4, 9, 1, 6, 3, 0, 1, 2, 3, 2, 4, 8, 9, 2, 5, 1, 0, 3, 2, 7, 7, 7, 7, 4, 2, 3, 9, 4, 0, 7, 0, 3, 6, 1, 5, 8, 7, 5, 3, 2, 0, 5, 9, 1, 7, 2, 4, 0, 8, 1, 4, 0, 1, 1, 7, 3, 9
OFFSET
1,3
COMMENTS
Product_{k>=1} (1 - 1/A002476(k)^2) = 1/A175646 = 0.9671040753637981066150556834173635260473412207450...
Let Zeta_{6,1}(4) = 1/ Product_{k>=1}(1-1/A002476(k)^4) = 1.0004615089.. and Zeta_{6,1}(2)= A175646 as tabulated in arXiv:1008.2547. Then this constant equals Zeta_{6,1}(2)/Zeta_{6,1}(4). - R. J. Mathar, Jan 12 2021
LINKS
R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015, Zeta_{6,1}(4) and Zeta_{6,1}(2) in Section 3.2.
FORMULA
A334481 * A334482 = 54/(5*Pi^2).
EXAMPLE
1.03353788846135284308284618497621833947517677481...
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, May 02 2020
EXTENSIONS
More digits from Vaclav Kotesovec, Jun 27 2020
STATUS
approved