login
A351561
a(n) = n + d(n) - phi(n), where d is the number of divisors function, and phi is the Euler totient function.
1
1, 3, 3, 5, 3, 8, 3, 8, 6, 10, 3, 14, 3, 12, 11, 13, 3, 18, 3, 18, 13, 16, 3, 24, 8, 18, 13, 22, 3, 30, 3, 22, 17, 22, 15, 33, 3, 24, 19, 32, 3, 38, 3, 30, 27, 28, 3, 42, 10, 36, 23, 34, 3, 44, 19, 40, 25, 34, 3, 56, 3, 36, 33, 39, 21, 54, 3, 42, 29, 54, 3, 60, 3, 42, 41, 46, 21, 62, 3, 58, 32, 46, 3, 72, 25, 48
OFFSET
1,2
LINKS
FORMULA
a(n) = A000005(n) + A051953(n) = n - A063070(n) = n + A000005(n) - A000010(n).
MATHEMATICA
Array[# + DivisorSigma[0, #] - EulerPhi[#] &, 86] (* Michael De Vlieger, Feb 21 2022 *)
PROG
(PARI) A351561(n) = (n+numdiv(n)-eulerphi(n));
CROSSREFS
Cf. A000005, A000010, A020488 (fixed points), A051953, A063070.
Cf. also A055517.
Sequence in context: A320045 A334481 A361679 * A029620 A204100 A048691
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 21 2022
STATUS
approved