Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Aug 25 2021 12:59:54
%S 1,0,3,3,5,3,7,8,8,8,4,6,1,3,5,2,8,4,3,0,8,2,8,4,6,1,8,4,9,7,6,2,1,8,
%T 3,3,9,4,7,5,1,7,6,7,7,4,8,1,4,9,1,6,3,0,1,2,3,2,4,8,9,2,5,1,0,3,2,7,
%U 7,7,7,4,2,3,9,4,0,7,0,3,6,1,5,8,7,5,3,2,0,5,9,1,7,2,4,0,8,1,4,0,1,1,7,3,9
%N Decimal expansion of Product_{k>=1} (1 + 1/A002476(k)^2).
%C Product_{k>=1} (1 - 1/A002476(k)^2) = 1/A175646 = 0.9671040753637981066150556834173635260473412207450...
%C Let Zeta_{6,1}(4) = 1/ Product_{k>=1}(1-1/A002476(k)^4) = 1.0004615089.. and Zeta_{6,1}(2)= A175646 as tabulated in arXiv:1008.2547. Then this constant equals Zeta_{6,1}(2)/Zeta_{6,1}(4). - _R. J. Mathar_, Jan 12 2021
%H R. J. Mathar, <a href="https://arxiv.org/abs/1008.2547">Table of Dirichlet L-series and prime zeta modulo functions for small moduli</a>, arXiv:1008.2547 [math.NT], 2010-2015, Zeta_{6,1}(4) and Zeta_{6,1}(2) in Section 3.2.
%F A334481 * A334482 = 54/(5*Pi^2).
%e 1.03353788846135284308284618497621833947517677481...
%Y Cf. A002476, A175646, A334477, A334482.
%K nonn,cons
%O 1,3
%A _Vaclav Kotesovec_, May 02 2020
%E More digits from _Vaclav Kotesovec_, Jun 27 2020