login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334124
a(n) = 2^n * sqrt(Resultant(U_{2*n}(x/2), T_{2*n}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1).
2
1, 3, 71, 17753, 46069729, 1234496016491, 341133743251787719, 971684488369988888850993, 28523907708086181923163934073729, 8628515016553040037389969912341438652243, 26895841132028233579514694272575933932911355677831
OFFSET
0,2
FORMULA
a(n) = A103997(n,n).
a(n) ~ 2^(1/4) * exp(2*G*n*(2*n+1)/Pi) / (1 + sqrt(2))^n, where G is Catalan's constant A006752. - Vaclav Kotesovec, Apr 16 2020, updated Jan 03 2021
MATHEMATICA
Table[2^n * Sqrt[Resultant[ChebyshevU[2*n, x/2], ChebyshevT[2*n, I*x/2], x]], {n, 0, 12}] (* Vaclav Kotesovec, Apr 16 2020 *)
PROG
(PARI) {a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(2*n, 1, I*x/2)))}
(Python)
from math import isqrt
from sympy import resultant, chebyshevt, chebyshevu, I
from sympy.abc import x
def A334124(n): return isqrt(resultant(chebyshevu(n<<1, x/2), chebyshevt(n<<1, I*x/2))*(1<<(n<<1))) if n else 1 # Chai Wah Wu, Nov 07 2023
CROSSREFS
Main diagonal of A103997.
Sequence in context: A226709 A226844 A300540 * A336441 A073589 A089537
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 15 2020
STATUS
approved