OFFSET
0,2
LINKS
FORMULA
a(n) = A103997(n,n).
a(n) ~ 2^(1/4) * exp(2*G*n*(2*n+1)/Pi) / (1 + sqrt(2))^n, where G is Catalan's constant A006752. - Vaclav Kotesovec, Apr 16 2020, updated Jan 03 2021
MATHEMATICA
Table[2^n * Sqrt[Resultant[ChebyshevU[2*n, x/2], ChebyshevT[2*n, I*x/2], x]], {n, 0, 12}] (* Vaclav Kotesovec, Apr 16 2020 *)
PROG
(PARI) {a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(2*n, 1, I*x/2)))}
(Python)
from math import isqrt
from sympy import resultant, chebyshevt, chebyshevu, I
from sympy.abc import x
def A334124(n): return isqrt(resultant(chebyshevu(n<<1, x/2), chebyshevt(n<<1, I*x/2))*(1<<(n<<1))) if n else 1 # Chai Wah Wu, Nov 07 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 15 2020
STATUS
approved