login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334088
a(n) = sqrt(Resultant(T(2*n,x/2), T(2*n,i*x/2))), where T(n,x) is a Chebyshev polynomial of the first kind and i = sqrt(-1).
5
1, 1, 8, 676, 591872, 5347119376, 497996601804800, 477995151754478453824, 4727827717838439286122217472, 481856411624794348153802518369517824, 506033683217425527860454091268429289861152768
OFFSET
0,3
FORMULA
a(n) ~ exp(4*G*n^2/Pi) / 2^(2*n - 1/4), where G is Catalan's constant A006752. - Vaclav Kotesovec, Apr 14 2020
MATHEMATICA
Table[Sqrt[Resultant[ChebyshevT[2*n, x/2], ChebyshevT[2*n, I*x/2], x]], {n, 0, 12}] (* Vaclav Kotesovec, Apr 14 2020 *)
PROG
(PARI) {a(n) = sqrtint(polresultant(polchebyshev(2*n, 1, x/2), polchebyshev(2*n, 1, I*x/2)))}
(Python)
from math import isqrt
from sympy.abc import x
from sympy import resultant, chebyshevt, I
def A334088(n): return isqrt(resultant(chebyshevt(n<<1, x/2), chebyshevt(n<<1, I*x/2))) if n else 1 # Chai Wah Wu, Nov 07 2023
CROSSREFS
Sequence in context: A128875 A199801 A278857 * A343191 A202910 A332168
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 14 2020
STATUS
approved