login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A333695 Numerators of coefficients in expansion of Sum_{k>=1} phi(k) * log(1/(1 - x^k)). 1
1, 3, 7, 11, 21, 7, 43, 43, 61, 63, 111, 77, 157, 129, 49, 171, 273, 61, 343, 231, 43, 333, 507, 301, 521, 471, 547, 473, 813, 147, 931, 683, 259, 819, 129, 671, 1333, 1029, 1099, 903, 1641, 43, 1807, 111, 427, 1521, 2163, 399, 2101, 1563, 637, 1727, 2757, 547, 2331 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..55.

FORMULA

a(n) = numerator of Sum_{d|n} phi(n/d) / d.

a(n) = numerator of Sum_{k=1..n} 1 / gcd(n,k).

a(n) = numerator of sigma_2(n^2) / (n * sigma_1(n^2)).

a(p) = p^2 - p + 1 where p is prime.

EXAMPLE

1, 3/2, 7/3, 11/4, 21/5, 7/2, 43/7, 43/8, 61/9, 63/10, 111/11, 77/12, 157/13, 129/14, 49/5, ...

MATHEMATICA

nmax = 55; CoefficientList[Series[Sum[EulerPhi[k] Log[1/(1 - x^k)], {k, 1, nmax}], {x, 0, nmax}], x] // Numerator // Rest

Table[Sum[EulerPhi[n/d]/d, {d, Divisors[n]}], {n, 55}] // Numerator

Table[Sum[1/GCD[n, k], {k, n}], {n, 55}] // Numerator

Table[DivisorSigma[2, n^2]/(n DivisorSigma[1, n^2]), {n, 55}] // Numerator

PROG

(PARI) a(n) = numerator(sumdiv(n, d, eulerphi(n/d) / d)); \\ Michel Marcus, Apr 03 2020

CROSSREFS

Cf. A000010, A000203, A001157, A018804, A057660, A071708, A072155, A074947, A074949, A333696 (denominators).

Sequence in context: A284298 A178881 A244001 * A061258 A057660 A130972

Adjacent sequences:  A333692 A333693 A333694 * A333696 A333697 A333698

KEYWORD

nonn,frac

AUTHOR

Ilya Gutkovskiy, Apr 02 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 1 00:13 EDT 2021. Contains 346377 sequences. (Running on oeis4.)