login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333695
Numerators of coefficients in expansion of Sum_{k>=1} phi(k) * log(1/(1 - x^k)).
1
1, 3, 7, 11, 21, 7, 43, 43, 61, 63, 111, 77, 157, 129, 49, 171, 273, 61, 343, 231, 43, 333, 507, 301, 521, 471, 547, 473, 813, 147, 931, 683, 259, 819, 129, 671, 1333, 1029, 1099, 903, 1641, 43, 1807, 111, 427, 1521, 2163, 399, 2101, 1563, 637, 1727, 2757, 547, 2331
OFFSET
1,2
FORMULA
a(n) = numerator of Sum_{d|n} phi(n/d) / d.
a(n) = numerator of Sum_{k=1..n} 1 / gcd(n,k).
a(n) = numerator of sigma_2(n^2) / (n * sigma_1(n^2)).
a(p) = p^2 - p + 1 where p is prime.
From Amiram Eldar, Nov 21 2022: (Start)
a(n) = numerator(A057660(n)/n).
Sum_{k=1..n} a(k)/A333696(k) ~ c * n^2, where c = zeta(3)/(2*zeta(2)) = 0.365381... (A346602). (End)
EXAMPLE
1, 3/2, 7/3, 11/4, 21/5, 7/2, 43/7, 43/8, 61/9, 63/10, 111/11, 77/12, 157/13, 129/14, 49/5, ...
MATHEMATICA
nmax = 55; CoefficientList[Series[Sum[EulerPhi[k] Log[1/(1 - x^k)], {k, 1, nmax}], {x, 0, nmax}], x] // Numerator // Rest
Table[Sum[EulerPhi[n/d]/d, {d, Divisors[n]}], {n, 55}] // Numerator
Table[Sum[1/GCD[n, k], {k, n}], {n, 55}] // Numerator
Table[DivisorSigma[2, n^2]/(n DivisorSigma[1, n^2]), {n, 55}] // Numerator
PROG
(PARI) a(n) = numerator(sumdiv(n, d, eulerphi(n/d) / d)); \\ Michel Marcus, Apr 03 2020
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Ilya Gutkovskiy, Apr 02 2020
STATUS
approved