login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071708
Numerator of Sum_{k=1..n} phi(k)/k.
4
1, 3, 13, 8, 52, 19, 163, 361, 1223, 1307, 16477, 5749, 83977, 88267, 280817, 147916, 2754812, 2839897, 58552633, 60492571, 63263911, 65468386, 1612469468, 549883871, 579629587, 596790577, 1864736021, 1912541636, 58587007624, 59449633388, 1939984033478
OFFSET
1,2
REFERENCES
József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Section I.24, page 27.
Arnold Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Berlin, 1963.
LINKS
FORMULA
Also numerator of Sum_{i=1..n} (mu(i)/i)*floor(n/i). - Ridouane Oudra, Nov 26 2019
a(n)/A072155(n) ~ (6/Pi^2) * n + O(log(n)^(2/3)*log(log(n))^(4/3)). - Amiram Eldar, Sep 18 2022
EXAMPLE
1, 3/2, 13/6, 8/3, 52/15, 19/5, 163/35, 361/70, 1223/210, ...
MAPLE
with(numtheory); seq(numer(add(phi(k)/k, k = 1..n)), n = 1..35); # G. C. Greubel, Aug 25 2019
MATHEMATICA
Table[Sum[EulerPhi[k]/k, {k, n}], {n, 35}]//Numerator (* G. C. Greubel, Aug 25 2019 *)
PROG
(PARI) a(n) = numerator(sum(k=1, n, eulerphi(k)/k));
vector(35, n, a(n)) \\ G. C. Greubel, Aug 25 2019
(Magma) [Numerator( &+[EulerPhi(k)/k: k in [1..n]] ): n in [1..35]]; // G. C. Greubel, Aug 25 2019
(Sage) [numerator( sum(euler_phi(k)/k for k in (1..n)) ) for n in (1..35)] # G. C. Greubel, Aug 25 2019
(GAP) List([1..35], n-> NumeratorRat( Sum([1..n], k-> Phi(k)/k) ) ); # G. C. Greubel, Aug 25 2019
CROSSREFS
Cf. A072155 (denominators), A000010, A059956.
Sequence in context: A012789 A273025 A273122 * A136592 A351657 A376431
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Jun 28 2002
STATUS
approved