OFFSET
0,2
COMMENTS
Erdős proved that a(n) >= 2n, and that there is a constant c > 0 such that for sufficient large n, n^(1+c) < a(n) < (2n)^(log(n)/log(2)). - Amiram Eldar, May 18 2017
LINKS
Giovanni Resta, Table of n, a(n) for n = 0..600
Paul Erdős, On some divisibility properties of (2n n), Canadian Mathematical Bulletin, Vol. 7, No. 4 (1964), pp. 513-518.
MATHEMATICA
f[n_] := Block[{k = n + 1}, bn = Binomial[2n, n]; While[ !IntegerQ[ Binomial[2k, k]/bn], k++ ]; k]; Table[ f[n], {n, 0, 50}]
lk[n_]:=Module[{k=n+1, c=Binomial[2n, n]}, While[Mod[Binomial[2k, k], c]!=0, k++]; k]; Array[lk, 60, 0] (* Harvey P. Dale, Apr 02 2022 *)
PROG
(PARI) for(n=1, 45, s=n+1; while(binomial(2*s, s)%binomial(2*n, n)>0, s++); print1(s, ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jun 24 2002
EXTENSIONS
Edited by Robert G. Wilson v, Jun 27 2002
STATUS
approved